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Disclaimer

These course notes cover the fundamentals and select applications 
of Digital Signal Processing and are intended solely for education.  
No other use is intended or authorized. No warranty or implied 
warranty is given that any of the material is fit for a particular 
purpose,  application, or product. Although the author believes that 
the concepts, algorithms, software, and data presented are accurate, 
he provides no guarantee or implied guarantee that they are free of 
error. The material presented should not be used without extensive 
verification. If you do not wish to be bound by the above then 
please do not use these notes. 
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• Discrete-time systems and digital filters
• The z transform in DSP
• Design of FIR digital filters
• Design of IIR digital filters
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transform
• FFT info and applications
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Digital Signal Processing (DSP) Introduction

• Digital Signal Processing (DSP) is a branch of signal processing
that emerged from the rapid development of VLSI technology 
that made feasible real- time digital computation.

• DSP involves time and amplitude quantization of signals and 
relies on the theory of discrete- time signals and systems.

• DSP emerged as a field in the 1960s. 

• Early applications of off- line DSP include seismic data analysis, 
voice processing research.
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Digital vs Analog Signal Processing

Advantages of digital over analog signal processing:

• flexibility via programmable DSP operations,
• storage of signals without loss of fidelity,
• off- line processing,
• lower sensitivity to hardware tolerances,
• rich media data processing capabilities,
• opportunities for encryption in communications,
• Multimode functionality and opportunities for software radio.

- Disadvantages : 

• Large bandwidth and CPU demands 
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DSP Historical Perspective

• Nyquist Theorem 1920's.

• Statistical Time Series, PCM 1940's.

• Digital Filtering, FFT, Speech Analysis mid 1960s (MIT, Bell 
Labs, IBM).

• Adaptive Filters, Linear Prediction (Stanford, Bell Labs, Japan 
1960s).

• Digital Spectral Estimation, Speech Coding (1970s).
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DSP Historical Perspective (2)

• First Generation DSP Chips (Intel microcontroler, TI, AT&T, 
Motorola, Analog Devices (early 1980s)

• Low-cost DSPs (late 1980s)

• Vocoder Standards for civilian applications (late 1980s)

• Migration of DSP technologies in general purpose CPU/Controllers
"native" DSP   (1990s)

• High Complexity Rich Media Applications

• Low Power (Portable) Applications
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DSP Applications

• Military Applications (target tracking, radar, sonar, secure 
communications, sensors, imagery)

• Telecommunications (cellular, channel equalization, vocoders, 
software radioetc)

• PC and Multimedia Applications (audio/video on demand, streaming
data applications, voice synthesis/recognition)

• Entertainment (digital audio/video compression, MPEG, CD, MD, 
DVD, MP3)

• Automotive (Active noise cancellation, hands-free communications, 
navigation-GPS, IVHS)

• Manufacturing, instrumentation, biomedical, oil exploration, robotics

• Remote sensing, security
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Communications and DSP

• DTMF (use of the FFT and digital oscillators)

• Adaptive echo cancellation (Hands-free telephony, Speakerphones)

• Speech coding (speech coding in cellular phones)

• Modem (data/computer connectivity)

• Software radio (multi-mode/multi standard wireless communications)

• Channel estimation (equalization)

• Antenna beamforming (space division multiple access - SDMA)

• CDMA (modulating with random sequences)
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Typical Digital Signal Processing System

x(t) x`(t) x(nT)

y(nT)

y`(t)y(t)

LPF sample
& A/D

Digital 
Signal 
Processor

D/ALPF

fs

Remarks:  The diagram shows the sampling, processing, and reconstruction 
of  an analog signal.  There are applications where processing stops at the digital
signal processor, e.g., speech recognition.

Antialiasing
Reconstruction

NowdaysNowdays LPF and A/D integratedLPF and A/D integrated

NowdaysNowdays LPF and D/A integratedLPF and D/A integrated

DSP chip
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Symbols and Notation

indextimediscrete;

function)(systemresponseimpulse;(.)

functionsresponsefrequencyandtransfer;(.)

outputtimediscrete;)(

inputtimediscrete;)()(|)(
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Remarks:  In general and unless otherwise stated lower case symbols will 
be used for time-domain signals and  upper case symbols will be used for
transform domain signals.  Bold face or underlined face symbols will be 
Be generally used for vectors or matrices.
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Continuous vs Discrete-time

Remarks: A continuous-time signal is converted to discrete-time using sampling and 
quantization.  As a result aliasing and quantization noise is introduced.  This noise
can be controlled by properly designing the quantizer and anti-aliasing filter.

Qx(t) x(n)

t

x(t)

n

Continuous-time (analog)  Signal Discrete-time (digital) signal

0 T 2T ...

x(n)
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Quantization Noise

sampling period

)()()( tetxtx qq  

eq(t)

analog waveform

quantized waveform

quantization noise

T

xa(t)

xq(t)
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Simplest Quantization Scheme -
Uniform PCM

Performance in terms of Signal to Noise Ratio (SNR)

where Rb is the number of bits and the value of  K1 

depends on signal statistics. For  telephone speech
K1 = -10

1bPCM KR02.6SNR 
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Oversampling / or / Conversion

• Integrated oversampling and 1-bit quantization

• Very compact and inexpensive circuitry (some low power applications 
as well)

• Lowers analog circuit complexity with a modest increase in software 
(DSP MIPS) complexity

• Uses concepts from multirate signal processing and Delta Modulation

• Will be described in the context of multirate signal processing
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Time vs Frequency Domain
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x ( t ) |X ( f ) |

Remarks: Slowly time-varying signals tend to have low-frequency content
while signals with abrupt changes in their amplitudes have high frequency content.
The frequency content of signals can be estimated using Fourier techniques.
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Example:  Time vs Frequency Domain Speech

Time domain speech segment

Time (mS)

A
m

p
lit

u
d

e

TAPE TIME: 3840

0 8 16 24 32

1.0

0.0

-1.0

M
a

g
n

it
u

d
e

 (
d

B
)

-30

0

20

40

0 1 2 3 4

Frequency (KHz)

Time domain speech segment

Time (mS)

A
m

p
li

tu
d

e

TAPE TIME: 8014

0 8 16 24 32

1.0

0.0

-1.0

M
ag

n
it

u
d

e
 (

d
B

)

-20

0

20

50

0 1 2 3 4

Frequency (KHz)

fundamental

frequency

Formant Structure

Periodic waveform gives harmonic spectraPeriodic waveform gives harmonic spectra
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Some Important Signals

)(n ....

n

1

0

Discrete-time Impulse

Think of signals as a weighted sum of impulses. Think of signals as a weighted sum of impulses. 
Impulses help in analyzing signals and filtersImpulses help in analyzing signals and filters
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Some Important Signals (3)

Sinusoids are used in analyzing or synthesizing acoustic and othSinusoids are used in analyzing or synthesizing acoustic and other signalser signals

The sinusoid

}{ )
2

(sin)(sin t
T

t


Period TPeriod T

T
f

 2
2  units:  units:  ωω((rad/srad/s)    )    f f (Hz)   T(s)(Hz)   T(s)
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Some Important Signals (4)

The sinc function

}{
t

t
t

)sin(
)(sinc

. . .

0

. . .

π 2π

SincSinc functions often appear in signal and filter analysisfunctions often appear in signal and filter analysis
particularly when considering frequency domain behaviorparticularly when considering frequency domain behavior

mainlobemainlobesidelobessidelobes
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Some Important Signals (5)

Random noise

Encountered in communication systems and other applicationEncountered in communication systems and other application
Characterized by their mean and varianceCharacterized by their mean and variance

2009 Copyright 2009 ©Andreas Spanias I-22

Representing Periodic Signals with Sinusoids

)sin()cos( tkjtke oo
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Fourier series:  Trigonometric form:Fourier series:  Trigonometric form:

Fourier series:  Complex (magnitude/phase) form:Fourier series:  Complex (magnitude/phase) form:

Preferred in engineering Preferred in engineering - -- - >>>>

Xk are complex F.S. coefficients and provide spectral magnitude andare complex F.S. coefficients and provide spectral magnitude and phase infophase info

andand
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Fourier Series Analysis Example
Representing a Periodic Pulse Train as a Sum of Harmonic Sinusoids

Remarks: A periodic pulse signal has a discrete F.S. spectrum described by
samples that fall on a sinc (sinc(x)=sin(x)/x) function. As the period 
increases the F.S.  components become more dense in frequency and weaker 
in amplitude. If  T goes to infinity periodicity is lost and the F.S. vanishes.
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Fourier Series Example (2)
Harmonic Spectrum

. . . . . .
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d/T=1/5

d/T=1/10

4π

2π

0

0

Fourier Series Example (3)
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Use Sinusoids to synthesize a periodic pulse using the 
Fourier series (only one period shown)

1 sinusoid1 sinusoid

2 sinusoids2 sinusoids

3 sinusoids3 sinusoids

10 sinusoids10 sinusoids

50 sinusoids50 sinusoids

100 sinusoids100 sinusoids
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The Continuous Fourier Transform (CFT) Equations

The Fourier transform






 dtetxX tj )()(

The inverse Fourier transform

1
( ) ( )

2
j tx t X e d 







 
A Fourier transform pair is designated by: )()( Xtx 

Synthesis Expression

Analysis Expression

Remarks: Both time and frequency are continuous variables.  The CFT can
handle non-periodic signals as long as they are integrable.  Periodic signals can 
be handled using  the impulse and CFT properties.
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Fourier transform of a time-limited pulse
(Represent a single pulse by sinusoids)

Given the signal  tx

d

t
......

0

Remarks: Note that a time-limited signal has a non-bandlimited CFT spectrum.
The sinc function has zero crossings at integer multiples of 2π/d.  As the pulse
width increases the sinc function “shrinks”.  In the limit, if T goes to infinity 
(i.e., pulse becomes D.C. signal) the sinc function collapses to a unit impulse.
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Fourier transform of a time-limited pulse(Cont.)
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a transform paira transform pair
time domaintime domain frequency domainfrequency domain

pulsepulse sincsinc
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Symmetry of the Fourier transform
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X(t)

X(ω)

2π x(-ω)

(time(time--limited)limited)

(band(band--limited)limited)
(non time(non time--limited)limited)

(non band(non band--limited)limited)
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The Time-Domain Convolution (Filtering) Property

)()(

)()(




Hth

Xtx




DEMODEMO

)()()(*)(  XHtxth 

convolution in time is multiplication in frequencyconvolution in time is multiplication in frequency

 dtxhtxth )()()(*)(  

......
t

... ...... * = t

Example: Convolution of an exponential with a pulseExample: Convolution of an exponential with a pulse

MuliplicationMuliplication in frequency in frequency 
is essentially a filtering operationis essentially a filtering operation
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))()(()cos( 000  t

Important Fourier Transform Pairs
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π(ω- ωO)
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Truncating a Cosine
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Truncating Signals with Tapered Windows
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Truncating Speech 

CFT

Normalized frequency x rad/sec
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CFT

Normalized frequency x rad/sec

Truncating Speech (tapered window)
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The Sampling Process

A bandlimited signal that has no spectral components at or above 
B can be uniquely represented by its sampled values spaced at 
uniform intervals that are not more than π/B seconds apart.

or  a signal that is bandlimited to B must be sampled at a rate of 
ωs where   

B
T




xx ==
analog signalanalog signal samplingsampling digital signaldigital signal


 B

forB ss  2
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Example:  Audio - Bandwidth

200 - 3200 Hz Basic Telephone Speech
Intelligible
Preserves Speaker Identity

50 - 7000 Hz Wideband Speech
AM-grade audio

50 - 15000 Hz Near High Fidelity
FM-grade Audio

20 - 20000 Hz High-Fidelity
CD/DAT Quality Voice
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Example: Sampling of Audio Signals

192 kHz96 kHzDVD audio (DVD-A)

2.8224 MHz
100 kHzSuper audio CD 

(SACD)

48 kHz
20 kHzDigital audio tape 

(DAT)

44.1 kHz20 kHzHigh-fidelity, CD

16 kHz7 kHzWideband audio

8 kHz3.2 kHzTelephony

Sampling frequencyBandwidthFormat
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Sampling and Periodic Spectra

......

……

t 00

)(tx )(X

BB

... ...

T 2T 3T

......

0

)(txs

0

)(sX

B s
s2s Bt

1/T



2009 Copyright 2009 ©Andreas Spanias I-41

Signal Reconstruction using an Ideal Filter
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ALIASING (UNDERSAMPLING)  ωs<2B

the signal can not be recovered perfectly even with an ideal filthe signal can not be recovered perfectly even with an ideal filter ter 
only a distorted version of the signal can be recoveredonly a distorted version of the signal can be recovered

......

0

)(sX

B s s2B

aliasingaliasing
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Oversampling ωs>>2B

...

0

)(sX

B s s2s B

Guard bandsGuard bands

OversamplingOversampling relaxes the requirements on relaxes the requirements on antialiasingantialiasing filtersfilters

It is used in It is used in // ((/ / )  A)  A--toto--D convertersD converters
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Example

Differential equation:

dy t

dt RC
y t

RC
x t

( )
( ) ( ) 

1 1

Transfer function:

H s
sRC
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1

x(t)

R

C
i(t) y(t)

Frequency response function:

RCj
H
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1
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)sin()( ttx 
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if sinusoid in sinusoid in 
sinusoid outsinusoid out
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Example - Impulse Response

Consider the circuit below with R=1M, C=1x10-6

dh t

dt RC
h t

RC
t

( )
( ) ( ) 

1 1


The solution: h t
RC

e e
t

RC t( )  
 1

for t  > 0

x(t)

R

C
i(t) y(t)

..

t
2009 Copyright 2009 ©Andreas Spanias I-46

Example - Convolve and obtain an output

Consider the RC with impulse response

and the input x t u t u t( ) ( ) ( )  1
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Discrete-time Linear Systems

Digital Filters

Jan. 2009 Copyright 2009 ©Andreas Spanias II- 2

Discrete- time Linear Systems – Digital Filters

x(n)
h(n)

y(n)

The output is produced by convolving the input with the impulse response

)(*)()()()( nxnhmnxmhny
m

 




This operation can also involve a finite-length impulse response(FIR) 
sequence





L

m

mnxmhny
0

)()()(

An FIR filter is programmed using a multiply-accumulate instruction
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Some Definitions

•A digital filter is linear if it has the property of 
generalized superposition

•A digital filter is causal if it non anticipatory,  
i.e., the present output does not depend on future 
inputs.  

•All real-time systems are causal. 

• Non-causalities arise in image processing where 
the signal indexes are spatial instead of temporal. 

• Unless otherwise stated all systems in this 
course will be assumed causal.
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Some More  Definitions

Lb

.



1zT or ;unit delay
x(n) x(n-1)

x(n) bL x(n)

x(n)

x(n-1)

x(n)+x(n-1)

;signal scaling by a 
filter coefficient

;signal addition

x(n) x(n-1)
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IIR  Digital Filter Structure
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FIR Digital Filter Structure





L

i
i inxbny

0

)()(

 ny nx

T T

0b

Lb...

.....




 



1b
.

Jan. 2009 Copyright 2009 ©Andreas Spanias II- 7

Two i/p- o/p  Equations for Digital Filters

x(n)
h(n)

y(n)

One can compute the output using the convolution sum











mm

mnhmxmnxmhny )()()()()(

or by using the difference equation
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Remark:  The impulse response h(n) can be determined by solving 
the difference equation.  
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Unit Impulse

The analysis of digital filters in the frequency domain is facilitated
using sinusoids. In the time domain a unique input signal is used
for analysis, namely the unit impulse. That is defined as:

   0n    for                   1
elsewhere       0

n

 n

n0
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Signal Representation with Unit Impulses

Any discrete-time signal may be represented by a linear combination
of unit impulses

is represented by:

x n n n n

n n n

( ) . ( ) . ( ) ( )

( ) . ( ) . ( )

     
     

5 2 1 5 1 2

1 5 2 2 5 3

  
  

 nx

n10 2 3 4 5

50.

251.

50.

52.
1
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Impulse Response

The response of a digital filter to a unit impulse is known as 
impulse response and is given by

)(...)2()1(

)(...)1()()(

21
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Mnhanhanha
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(n)
h(n)

h(n)
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Impulses as input to source- system LPC Vocoders

Vowels are typically synthesized by exciting a filter representiVowels are typically synthesized by exciting a filter representing the ng the 
mouth and nasal (vocal tract) cavity with a train of periodic immouth and nasal (vocal tract) cavity with a train of periodic impulsespulses

VOCAL

TRACT

FILTER

SYNTHETIC

SPEECH

gain

 
i

innx )()( 
pitch periodpitch period

TimeTime--varyingvarying
digital filterdigital filter
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Finite- Length Impulse Response (FIR)

If the digital filter has no feedback terms the impulse response is
finite length

)(...)1()()( 10 Lnbnbnbnh L  

0)0( bh 

1)1( bh 

2)2( bh 

LbLh )(

..

..

Note that

Remark:  The filter has a finite-length 
impulse response and is called FIR.  The 
values of the impulse response sequence 
are the coefficients themselves.  The filter 
is always stable.
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Example – The Moving Average Filter

)}(...)1()({
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Remark:  The moving average is essentially a low-pass (smoothing) 
filter. Later on we will see that  this filter is also optimal in 
estimation problems.
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J-DSP Simulation of Averaging Filter

L=10 L=50
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Infinite- Length Impulse Response (IIR)

If the digital filter has feedback terms then the impulse response is infinite 
length





M

i
i

L

i
i inhainbnh

10

)()()( 

Example: )1()()( 1  nhannh 

1)0( h 1)1( ah  2
1)2( ah  .... nanh )()( 1

Remark:  Note that if the coefficient a1 has magnitude larger than 
one the impulse response will go to infinity and hence the filter 
would be unstable.
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IIR – Another First Order Example

)1(8.0)(2.0)(  nhnnh 

0)8.0(2.0)(  nnh n

 nh

1z

8.0

 n



2.0

Remark:  This particular IIR filter is also a low-pass filter 
behaving in similar manner like the the averaging FIR filter. 



Jan. 2009 Copyright 2009 ©Andreas Spanias II- 17

IIR – Another First Order Example (Plot)
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Frequency Responses
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Impulse Response and Stability

Bounded Input Bounded Output (BIBO) stability is defined as




 0

)(
k

kh

The condition above is guaranteed if

1ip for    all     i = 1, 2, . . . , M
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)()()(
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mnxmhny

For the causal digital filter
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An Unstable Filter
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Example of Transient and Steady State Response
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Steady- State Sinusoidal Response of
Digital Filters

A special case of interest is the steady-state response to input sinusoids 
and is formulated as follows. For the IIR filter

The frequency response function is given by: 
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Steady- State Sinusoidal Response of
Linear Discrete Systems  (Cont.)

The frequency response function is periodic and an example of the
steady state sinusoidal response is given below

if:

)sin()(  nnx

then:

))(sin()()(   jjss eHneHny

sf

f2
 ;normalized frequency
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Example of Steady State Sinusoidal Response
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The filter is excited by a 500 Hz sinusoid and the
Sampling rate is 2000Hz.
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Frequency  Response Plot
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The Z-Transform in DSP
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The Z- Transform

•The z-transform plays a similar role in DSP as the Laplace 
transform in analog circuits and systems.

•It provides intuition that is sometimes not evident in time-
domain analysis

•Simplifies time-domain operations – time domain-convolution  
maps to Z-domain multiplication

•Used to define transfer functions

•Could be used to determine responses of systems using a table 
look-up process
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From the Laplace Transform to the Z- Transform
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The Z- Transform - Definition

Given the signal: )(nx

its Z-transform is X z x n z n

n

( ) ( ) 

  





For causal signals, i.e.,
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Selected Properties of the Z- Transform

Linearity: if: x n X z( ) ( ) and y n Y z( ) ( )
then

   x n y n X z Y z( ) ( ) ( ) ( )  

Shifting: )()( zXzmnx m

Convolution: )()()(*)( zYzXnynx 

Scaling (bandwidth expansion): )/()( azXnxa n 
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Delay of 7 Samples

7( 7) ( )x n z X z 
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Selected Z- Transform Pairs

Unit-Impulse:  ( )n  1

Sinusoids:  
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The Transfer Function

To write the transfer function put the difference equation  in the z-domain

x n X z( ) ( ) y n Y z( ) ( )and
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The Transfer Function (Cont.)

The transfer function H(z) is defined as:
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terms are in the 
denominator
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The Transfer Function  and the Impulse Response

It can be shown that a transfer function H(z) is related to the 
impulse response sequence h(n) by:







0

)()(
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nznhzH

or

h n H z( ) ( )

Convolution maps to multiplications in the z domain

)()()()(*)()( zHzXzYnhnxny 
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Example: Write the Transfer Function of a First Order IIR Filter

 ny
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2.0

Step 1: Write the Difference Equation

)1(8.0)(2.0)(  nynxny

Step 2: Transform all signals to the z domain

)()1(
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1 zYzny

zXnxzYny
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Example: Transfer Function of a First Order IIR Filter (cont.)

Step 3: Since z-transform is a linear operation I can write

)(8.0)(2.0)( 1 zYzzXzY 

Step 4: Form the ratio  Y(z)/X(z) to get the transfer function
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Note below that the impulse response can be written by inspection of  H(z)
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The Transfer Function of FIR Systems

For the FIR filter the transfer function is:
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Equivalent Filter Realizations

1

2

3

+

+
+

x(n)

y(n)

1.3

0.4

+

z -1

z -1 z -1

z -1

1

2

3

+

+

+z-1

z-1

1.3

0.4

x(n) y(n)

Direct Form 1

Direct Form 2

saves memory
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Poles and Zeros of  H(z)

In general the transfer function is rational;  it has a numerator and a 
denominator polynomial. 

The roots of the numerator and denominator polynomials are called the 
zeros and the poles respectively. 

Pole-zero decompositions of H(z) are quite useful and provide intuition in 
signal analysis and filter design.

















 M

i
i

L

i
i

M

L

pz

z
G

pzpzpz

zzz
GzH

1

1

21

21

)(

)(

))...()((

))...()((
)(




where G is a gain factor
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Example: Poles and Zeros of  H(z)
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Example:  Poles- Zeros of a Second Order System
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Note that the filter 
coefficients are 
real valued and 
therefore  poles 
and zeros occur in 
complex  
conjugate  pairs.
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Poles and Zeros and Stability

The poles are related to the stability of the filter since they are 
related to the impulse response of the system. In fact, the poles of
For stability all the poles must be inside the unit circle, that is

1ip for    all    i = 1, 2, . . . , M

IIR filters may be all-pole or pole-zero and stability is always a 
concern.    FIR or all-zero filters are always stable.
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The Frequency Response Function

The transfer function is
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The Frequency Response Function (Cont.)

The frequency response function and is a complex and periodic
With period 2. The normalized frequencies  are associated to the 
sampling frequencies  fs by

sf

f
T  2

where fs is the sampling frequency and f is any frequency of 
interest.  In practice, one determines the frequency response up to 
half the sampling frequency (fold-over frequency).

rad rad/s

Sampling period

Sampling frequency
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The Frequency Response Function (Cont.)

0 2

0 fs/2 fs

Foldover Frequency

π π

•The frequency response is usually plotted w.r.t. normalized frequencies ()

•The frequency response is periodic with period  fs (2 π )

•Since frequencies of interest are up to the bandwidth of the analog signal 

the spectrum is usually plotted up to  fs/2, ( π ) the foldover frequency
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The Frequency Response and Poles and Zeros

The magnitude frequency response function
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•Poles tend to create peaks in the magnitude frequency response 

•Zeros tend to create valleys in the magnitude frequency response

•Very selective filters are designed efficiently by placing poles
close to the unit circle

•Sharp notches are achieved efficiently with zeros very close to 
the unit circle

•A sharp notch in the frequency response needs many poles (high 
order) if we are restricted to an all-pole filter (not efficient). 

•A sharp peak in the frequency response needs many zeros (long 
or high order FIR) if an all-zero filter is to be used (not efficient). 

Remarks on Effects of Poles and Zeros on H(ej)
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Magnitude and Phase Response

The magnitude and phase response of

Frequency Index (Theta=2*PI*Index/128)
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Zero Locations and Frequency Response

o

o

o

foldover

o
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Pole Locations and Frequency Responses

X

X

X

X

As the poles move outwards we get sharper peaks and if the poles
are on the unit circle we get an oscillator.
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X

X

X

X

transient

f

nn

Bandwidth Expansion 
Moving poles inwards stabilizes numerically a filter

The scaling property of the zThe scaling property of the z--transform is exploited for bandwidth expansion in LPC transform is exploited for bandwidth expansion in LPC vocodersvocoders
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Stabilizing a Filter Using Pole Scaling
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Computing Filter Responses Using the 
Inverse Z-Transform

Partial Fractions: Given a the transfer function
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Example:  Find the Impulse Response of the Filter
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Filter Configurations

+( )X z

1 ( )H z1 ( )H z 2 ( )H z

3 ( )H z
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Use z transforms to change the filter structure
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J-DSP Simulation
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Interesting Transfer Functions
Long Term Prediction Synthesis Filter
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•Called long term because p is a long-term delay
•Used in Vocoders
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3095.01
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Impulse response

LTP excited by a random signal
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J- DSP Simulation of LTP
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Interesting Transfer Functions
All- Pole Filters

Typically used in speech processing
(vocoders) as well as in spectral 
estimation applications
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VOCAL

TRACT

FILTER

SYNTHETIC

SPEECH

gain

Interesting Transfer Functions
All- Pole Filters (2)
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Interesting Transfer Functions
Digital Oscillators

If we realize the z-transform of a sinusoid as a transfer function and
we excite it with a unit impulse we get a sinusoidal output
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If we excite H(z) below

with (n) then the output will be a sinusoid
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Interesting Transfer Functions
Digital Oscillators (2)
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Interesting Transfer Functions
Digital Oscillators (3)
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Dual Tone Multi-frequency Encoder

DTMF Applications and
Digital Oscillators (2)
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DTMF Functionality

Generates dual-tone-multi-
frequency (DTMF) tones 
used in landline telephony 
applications.

The tones can be played back 
using the J-DSP provided 
sound player, and used in a 
DSP simulation.

1 2cos(2 ) cos(2 )y f nT f nT  
are chosen from the tone frequencies 

(697, 770, 852, 941, 1209, 1336, 1477 (Hz)). The 

sampling frequency is 8 KHz, i.e., T = 0.125ms

where 1f and 2f

FFT

DTMF DEMO
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Design of FIR Digital Filters
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FIR Digital Filters

Advantages:
Linear Phase Design
Quite Efficient for designing notch filters
Always Stable

Disadvantages:
Requires High Order for Narrowband Design

Applications:
Speech Processing, Telecommunications
Data Processing, Noise Suppression, Radar
Adaptive Signal Processing, Noise Cancellation, Echo 

Cancellation, Multipath channels
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FIR Digital Filters
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FIR Filter Frequency Response
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LINEAR PHASE DESIGN

Linear Phase (constant time delay) FIR filter design is important 
in pulse transmission applications where pulse dispersion must 
be avoided. The frequency response function of the FIR filter is
written as:

  jL
L

jjj ebebebbeH ...)( 2
210

where

))(arg()(,)()(   jj eHeHM

)()()(   eMeH j
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GROUP DELAY

The time delay or group delay of a filter is defined as





d

d )(

therefore if                    is a linear function of         then  is a
constant.  

 is given in terms of samples
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LINEAR PHASE AND IMPULSE RESPONSE 
SYMMETRIES

It can be shown that linear phase is achieved if

)()( nLhnh 

where h(n) is the impulse response of the filter. For L = odd
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SYMMETRIC AND ANTI-SYMMETRIC 
LINEAR PHASE FILTERS

Two Anti-symmetries for  L=even  or  L=odd for

)()( nLhnh 

)()( nLhnh 

Two Symmetries for  L=even  or  L=odd for
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EXAMPLES OF SYMMETRIES
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EXAMPLES OF PHASE AND  SYMMETRY IN h(n)
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Symmetries and Linear Phase Simulated with J-DSP

Jan. 2009 Copyright ©2009 Andreas Spanias IV- 12

Fourier Series Design Example

For the ideal low pass filter the impulse response sequence is an 
infinite length sampled sinc function. Lets say the sampling 
frequency is 8 KHz and we wish to have a cutoff frequency at
2 KHz.  This results in
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Fourier Series Design Example  (Cont.)

The ideal impulse response hd(n) is given by

,...2,1,0,
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For an FIR filter of 11 coefficients
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This impulse response is not causal, however a shift operator with 
5 delays (z-5) will convert it into a causal DF. 
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REALIZATION
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Fourier Series Design Example  (Cont.)
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Fourier Series Design Example  L=32
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Fourier Series Design Example  L=64
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Truncating with Hamming Window  L=64
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F.S. Design; Rectangular vs Hamming Window - L=64
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Truncating in time- frequency convolution and F.S. design

•The main-lobe width determines transition characteristics

•The sidelobe level determines rejection characteristics

Ideal LPFNarrow mainlobe=
Narrower transition

Wide mainlobe =
Wide transition
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Truncating with Short/Long Windows and F.S. design

Wide mainlobe Wide transition

Narrow mainlobe Narrow transition
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Notes On Fourier Series Design

•The design performed in the previous example involved truncation
of an ideal symmetric impulse response.A symmetric impulse 
response produces a linear phase design.

•Truncation involves the use of a window function which is 
multiplied  with the impulse response. Multiplication in the time 
domain maps into frequency domain convolution and the spectral
characteristics of the window function affect the design. 

•The main-lobe width determines transition characteristics

•The sidelobe level determines rejection characteristics
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DEFINING DESIGN SPECIFICATIONS

  2
fH

dp1

1
dp1

ds
LPF Ideal

f
fp fs

Passband band Transition Stopband

Regions  Tolerance

fc
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DESIGN USING THE KAISER WINDOW

The Kaiser window is parametric and its bandwidth as well as its sidelobe
energy can be designed. Mainlobe bandwidth controls the transition 
characteristics and sidelobe energy affects the ripple characteristics. 
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 =  L/2 ; associated with the order of the filter

 is a design parameter that controls the shape of the window

I0(.) is a zeroth order modified Bessel function of the first kind



Jan. 2009 Copyright ©2009 Andreas Spanias IV- 25

DESIGN USING THE KAISER WINDOW (Cont.)
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25 terms from the Bessel function are sufficient
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EXAMPLES OF KAISER WINDOW
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KAISER WINDOW DESIGN EQUATIONS

Given  fp, fs, T and dp, ds determine the FIR filter coefficients.

Tff
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dpds
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and the kaiser parameter          is  given by
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DESIGN PROCEDURE

1. Determine the cutoff frequency for the ideal Fourier Series
method.

f
f f

c

s p


2
2. Design the ideal LPF using the Fourier Series.
3. Design the Kaiser window
4. Shift and truncate the ideal impulse response

Ln
L

nhnwnh dLPF 





  0,

2
)()(

Note that this procedure can be generalized for the design of 
BPF, HPF, and BSF.
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Design by Zero-Placement

As zeros are placed towards the unit circle the frequency 
response  magnitude decreases at and in the vicinity of  the 
frequency of the zeros.  
.

o

o

foldover
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π/2 π 0 π/4

Ideal frequency response 

N=16 samples 

π/4 π 0

Sampled ideal frequency response  

π/4 π 0

Interpolated frequency response 

(a) 

(b) 

(c) 

Frequency Sampling Methods for FIR Filter design
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Frequency Sampling Methods for FIR Filter design (3)
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Min-Max and Parks-McClellan Optimum FIR Design

The Parks-McClellan design is based on Min-Max

Equiripple and linear phase design is possible

This class of methods involve minimizing the maximum error
between the designed FIR filter frequency response and a prototype 

 
 )(maxmin
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FIR Filter Design Using MATLAB+

IN THE MATLAB SP TOOLBOX

cremez - Complex and nonlinear phase equiripple FIR filter design.
fir1       - Window based FIR filter design - low, high, band, stop, multi.
fir2       - Window based FIR filter design - arbitrary response.
fircls - Constrained Least Squares filter design - arbitrary response.
fircls1    - Constrained Least Squares FIR filter design - low and highpass
firls - FIR filter design - arbitrary response with transition bands.
firrcos - Raised cosine FIR filter design.
intfilt - Interpolation FIR filter design.
kaiserord - Window based filter order selection using Kaiser window.
remez - Parks-McClellan optimal FIR filter design.
remezord - Parks-McClellan filter order selection.

+ MATLAB is registered trade mark of the MathWorks
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FIR Filter Realizations

Direct Realizations
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FIR Filter Cascade Realizations

Cascade Realizations
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•Reduced Effects from Coefficient Quantization and round-off
•In Fixed-Point implementation signal scaling must be 
done carefully at each stage
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Transform-Domain FIR Filter Realizations

A Transform domain realization is possible using the overlap
and save and the FFT. This yields computational savings for high
order implementations.  Input data is organized in 2N-point blocks 
and blocks are shifted N  points at a time.  The data blocks and
N zero-padded coefficients are transformed and multiplied and the
results is inverse transformed.  The last N-points are selected as the
result.  The blocks are updated and the  process is repeated.  

F F T IF F T

x y

-

X k (0 )

X k (1 )

X k (L )

B k (0 )

B k (1 )

B k (L )

Select Last N points

x(n)

y(n)
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Implementing Efficiently Digital Cross-Over Using 
Subtractive Operations

LPF  to tweeter

to wooferLinear Phase LPF
With delay L/2 samples

-
+

could also implement delay compensation   z –L/2
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DESIGN OF IIR DIGITAL FILTERS
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IIR DIGITAL FILTERS

Advantages:
Efficient in terms of order

• Poles create narrow-band peaks efficiently
• Arbitrarily long impulse responses with few feedback  
• coefficients

Disadvantages:
• Feedback and stability concerns
• Sensitive to Finite Word Length Effects
• Generally non-Linear Phase

Applications:
• Speech Processing, Telecommunications
• Data Processing, Noise Suppression, Radar
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IIR FILTERS

The difference equation is:
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IIR FILTERS (Cont.)

The frequency-response function :

The transfer function:
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IIR Filter Design by Analog Filter Approximation

The idea is to use  many of the successful analog filter 
designs to design digital filters

This can be done by either:

• by sampling the analog impulse response  (impulse invariance)
and then determining a digital transfer function

or 

• by transforming  directly the analog transfer function to a digital 
filter transfer  function using the bilinear transformation
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IIR Filter Design by Analog Filter Approxination

The impulse invariance method suffers from aliasing and is
rarely used

The bilinear transformation does not suffer from aliasing and is
by more popular than the impulse invariance method.
The frequency relationship from the s-plane to the z-plane is 
non-linear, and one needs to compensate by pre-processing the 
critical frequencies such that after the transformation the desired 
response is realized. Stability is maintained in this transformation 
since the left-half s-plane maps onto the interior of the unit circle. 
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Impulse Invariance
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Impulse Invariance (2)
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The Bilinear Transformation
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The Bilinear Transformation  (Cont.)

The bilinear transformation compresses the frequency axis

    ,, 

The non-linear frequency transformation (frequency warping 
function) is given by
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Procedure for Analog Filter Approximation

1. Consider Critical Frequencies

2. Pre-warp critical frequencies

3. Analog Filter Design

4. Bilinear Transformation

5. Realization
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Applying the Bilinear Transformation



ω

Prewarping

Design

bilinear
transformation

specification



ω



Jan. 2009 Copyright © 2009 Andreas Spanias V-13

EXAMPLE: TRANSFORMING AN RC CIRCUIT TO A DF
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Apply pre-warpingSay we have the following DF specs:
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4

tan()
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Step 3: Design the analog filter.
In this case the analog filter function 
is  a first order LPF similar      
to an RC circuit
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Suppose we want a first-order 
(R-C  LPF)   appoximation
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TRANSFORMING AN RC CIRCUIT TO A DF (2)
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Step 4: Apply the Bilinear Transform

Step 5: Realization
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TRANSFORMING AN RC CIRCUIT TO A DF (3)
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Notice that there is no aliasing effect with the bilinear transformation.
Although in this simple R-C example the resultant digital filter is FIR, 
more complex analog filters will yield IIR digital filters. Jan. 2009 Copyright © 2009 Andreas Spanias V-16

Analog Filter Designs

•Butterworth - Maximally flat in passband

•Chebyshev I - Equiripple in passband

•Chebyshev II - Equiripple in stopband

•Elliptic - Equiripple in passband and stopband
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Butterworth Filter Design

• Maximally Flat in the Passband and Stopband
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Butterworth  Max. Flat in Passband and Stopband

Butterworth frequency response - transition is steeper as order increase
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Butterworth Transfer Function
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Poles on a  circle of 
radius c
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Design Example - Butterworth

• A Butterworth filter is designed by finding the poles of 
H(s)H(-s)

• The poles fall on a circle with radius c

• The poles falling on the left hand s-plane (stable poles) are 
chosen to form H(s)

• H(s) is transformed to H(z)
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Examples of IIR Filter Design Using MATLAB

FUNCTIONS IN THE SP TOOLBOX

IIR digital filter design.
butter     - Butterworth filter design.
cheby1     - Chebyshev type I filter design.
cheby2     - Chebyshev type II filter design.
ellip - Elliptic filter design.
maxflat - Generalized Butterworth lowpass filter design.
yulewalk - Yule-Walker filter design.

IIR filter order selection.
buttord - Butterworth filter order selection.
cheb1ord   - Chebyshev type I filter order selection.
cheb2ord   - Chebyshev type II filter order selection.
ellipord - Elliptic filter order selection.
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Butterworth Design in MATLAB

• % Design an IIR Butterworth filter 

• clear

• N=256; %for the computation of N discrete frequencies

• Wp=0.4; %passband edge

• Ws=0.6; %stopband edge

• Rp=1; % max dB deviation in passband

• Rs=40; %min dB rejection in stopband

• [M,Wn]=buttord(Wp,Ws,Rp,Rs);

• [b,a]=butter(M,Wn);

• theta=[(2*pi/N).*[0:(N/2)-2]]; % precompute the set of discrete frequencies up 
to fs/2

• H=freqz(b,a,theta); % compute the frequency response

• plot(angle(H))

• pause

• H=(20*log10(abs(H))); % plot the magnitude of the frequency response

• plot(H)

• title('frequency response')

• xlabel('discrete frequency index (N is the sampling freq.)')

• ylabel('magnitude (dB)')
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Butterworth Design in MATLAB (2)  

• Wp=0.4; %passband edge

• Ws=0.6; %stopband edge

• Rp=1; % max dB deviation in passband

• Rs=40; %min dB rejection in stopband

• b =    0.0021    0.0186    0.0745    0.1739    0.2609    0.2609 0.1739

• 0.0745    0.0186    0.0021

• a =    1.0000   -1.0893    1.6925   -1.0804    0.7329   -0.2722    0.0916

• -0.0174    0.0024   -0.0001
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Butterworth Design in MATLAB (3)  

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4
fre q u e n c y  re s p o n s e

d is c re t e  fre q u e n c y  in d e x  (N  i s  t h e  s a m p lin g  fr e q . )

m
a

g
n

it
u

d
e

 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real part

Im
a

g
in

a
ry

 p
a

rt



Jan. 2009 Copyright © 2009 Andreas Spanias V-25

MATLAB Chebyshev II Design Example

% Design an IIR Chebyshev II filter - Ex 2.20

clear
N=256; %for the computation of N discrete frequencies

Wp=0.4; passband edge
Ws=0.5; stopband edge
Rp=1; ripple in passband (dB)
Rs=60; rejection (dB)

[M,Wn] = cheb2ord(Wp,Ws, Rp, Rs); % determine order

[b,a] = cheby2(M,58,Wn); %determine coefficients
size(a)
size(b)

% use routines to plot frequency response

Chebyshev I - Equiripple in passband
Chebyshev II - Equiripple in stopband
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IIR Chebyshev II Example 
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MATLAB Elliptic Design Example

% Design an IIR Elliptic filter 
clear
N=256; %for the computation of N discrete frequencies

Wp=0.4; %passband edge
Ws=0.6; %stopband edge
Rp=2; % max dB deviation in passband
Rs=60; %min dB rejection in stopband
[M,Wn] = ellipord(Wp,Ws,Rp,Rs);
[b,a] = ellip(M,Rp,Rs,Wn); %design filter
size(a)
size(b)

theta=[(2*pi/N).*[0:(N/2)-2]]; % precompute the set of discrete frequencies up to fs/2
H=freqz(b,a,theta); % compute the frequency response
plot(angle(H))
pause
H=(20*log10(abs(H))); % plot the magnitude of the frequency response
plot(H)
title('frequency response')
xlabel('discrete frequency index (N is the sampling freq.)')
ylabel('magnitude (dB)')
pause
zplane(b,a) ;% z plane plot
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IIR Elliptic
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b =    0.0181    0.0431    0.0675    0.0675    0.0431    0.0181

a =    1.0000   -2.3214    3.3196   -2.8409    1.5154   -0.4151
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Introduction to Special types of 
Digital Filters

• Shelving Filter

• Peaking Filter

• Graphic Equalizer
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Shelving Filters

Shelving filters realize tone controls in audio systems.  The 
frequency response of a low-pass (bass) and high-pass (treble) 
shelving filter is shown below.

Frequency response of a low-pass and high-pass shelving filter. 
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Tone Control Block in J-DSP
The low frequencies are 
affected by bass 
adjustments with the 
audio signal processed 
through low-pass 
shelving filters. The high 
frequencies are affected 
by treble adjustments 
with the audio signal 
processed through high-
pass shelving filters. A 
J-DSP simulation using 
the Tone Control . Figure J-DSP simulation using the tone control block. 
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Peaking Filter Block in J-DSP

A J- DSP simulation using the Peaking Filter block is 
shown below

Figure 9: J-DSP simulation using the peaking filter block. 
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Graphic Equalizer
• A graphic equalizer uses a cascade of peaking filters 
• It alters the frequency response of each band by varying the 

corresponding peaking filter’s gain.

Peaking
Filter
#1

Peaking
Filter
#2

Peaking
Filter
#N-1

Peaking
Filter
#N

+ + +

Input

Output

…

…

…

A diagram of a graphic equalizer with N bands of 
control. Jan. 2009 Copyright © 2009 Andreas Spanias V-34

Graphic Equalizer Block in J-DSP

A J- DSP simulation using the Graphic Equalizer 
block is shown below. The sliders are a graphic 
representation of the frequency response applied to the 
input audio signal, hence the name “graphic” equalizer.

-DSP simulation using the graphic equalizer block. 
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FIR vs IIR Digital Filters

FIR IIR
Always stable
Transversal
All-zero model
Moving Average(MA) model

Inefficient for spectral peaks

Efficient for spectral notches

Not always stable
Recursive
All-pole or Pole-zero model
Autoregressive(AR) or

Autoregressive Moving
Average (ARMA) model

Efficient for spectral peaks (all-
pole, pole-zero)

All pole inefficient for spectral
notches
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FIR IIR

FIR vs IIR Digital Filters (Cont.)

Pole-zero efficient for both 
notches and peaks

Generally requires lower
order design

More sensitive to finite word
length implementation

Generally non-linear phase

Requires high order design

Less sensitive to finite word
length implementation

Linear phase design
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Digital Audio Filters (1)

The echo effect is obtained by 
mixing the input signal with its 
delayed version.

The proportion of the delayed 
signal to the "clean" original 
signal determines how obvious 
the echo is, and the delay 
signifies the echo period.

Echo Effects

• R = the number of echo delay in samples.

• In order to have a distinguishable echo, R

should be relatively large.

• b is the attenuation constant (|b| < 1).

 y(n)= x(n) + b . x(n-R)

Echo
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Digital Audio Filters (2)

Reverberation is obtained by
mixing the input signal with 
the delayed versions of its 
feedback.

The effect of the feedback 
results in multiple echoes.

Reverberation Effects

Reverb

• R = feedback delay in samples. 

• b is the attenuation constant (|b| < 1).

 y(n) = x(n) + b . y(n-R)
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Other Methods for Digital Filtering

Median Filters

The median operation ranks the samples in the memory of the 
filter and picks the sample that falls in the middle of the 
rank and assigns it to the output y(n)

Used for impulsive noise.  One application reported is scratch 
noise removal in vinyl record restoration

)}({)(
,...,2,1,0

inxny median
Li
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2-D Filters for Image Applications

• FIR 2-D filter

• IIR realizations also possible

• Theory very similar to 1-D and described in 
multidimensional signal processing books

1 2 1 2 1 2
0 0

( , ) ( , ) ( , )
L M

l m

y n n h n n x n l n m
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Implementation of 2D Filters

High-pass filtering of a natural image Low-pass filtering of a natural 

image 

LPFLPF

HPFHPF
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THE DISCRETE AND THE FAST 
FOURIER TRANSFORM
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The DTFT of a finite sequence

then
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Remark:  The   sin(.)/sin(.)  function is known as a digital sinc
or a Dirichlet function.
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The DTFT of a finite sequence  (Cont.)
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The DTFT of a finite sequence (Cont.)
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The Discrete Fourier Transform (DFT)

1
2 /

0

( ) ( )
N

j kn N

n

X k x n e 






  and   k = 0, 1, . . . , N-1

The inverse Discrete Fourier Transform (IDFT) of the sequence x(n)
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The DFT transform pair is denoted by

   x n X k( ) ( )
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The DFT Matrix

The DFT and the IDFT may be expressed in terms of matrices, i.e.,

where   k j k Ne 2 /
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The DFT Matrix (2)

1         1 

1       -1 
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j j

j j

 
      
     

F

1 1 1 1

1 1

1 1 1 1

1 1

j j

j j

 
   
  
   

F

N=2,  N=4,  and  N=8
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Selected Properties of the DFT

Linearity:

Shifting:

Circular Convolution:

Freq. Circular Convolution:

Parseval’s Theorem:

      x n y n X k Y k( ) ( ) ( ) ( )  

   x n m N e X kj km N( ) mod ( )/   2

x n
N
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n

N
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Frequency resolution of the DFT

The frequency resolution of the N-point DFT is

f
f

Nr
s

•The DFT can resolve exactly only the frequencies falling
exactly at: k fs/N.  There is spectral leakage for components
falling between the DFT bins

•Typically we use an FFT that is as large as we can afford

•Zero-padding is often use to provide more resolution in the
frequency components

•Zero padding is often combined with tapered windows
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Spectral Estimates over Finite-time  Data windows

Frequency domain representations are appropriately defined by the
Fourier Transform integrals over an infinite time span. 

The DFT, however, estimates the spectrum over finite time 

The DFT essentially applies a window to truncate the data.

The simplest data window is the rectangular (boxcar). 

Truncation in time is convolution in frequency

The frequency domain characteristics of the data window, namely 
its bandwidth and sidelobes, affect the DFT spectral estimate. 
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WINDOWS

The spectral characteristics of the window affect the spectral  estimates.  The 

rectangular window has the narrowest mainlobe width but the wordt sidelobes. 

Tapered windows have wider mainlobe width but better behaved bandwidth.

- 57 dB12 π /NBlackman

- 31 dB8 π /NHanning

- 41 dB8 π /NHamming

- 25 dB8 π /NTriangular

-13 dB4π/(N+1)Rectangular

Sidelobe

Level

Mainlobe
width

N-point

Window
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FFTs of Sinusoidal Signals (1) 

256-point FFT of a 500 Hz sinusoid (fs=8 kHz). Notice 
that this sinusoid is resolved exactly
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FFTs of Sinusoidal Signals (2) 

256-point FFT of a 510 Hz sinusoid (fs=8 kHz). Notice 
that this sinusoid is NOT resolved exactly
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Zero-padded FFTs of Sinusoidal Signals (2) 

16-point FFT of a 16-point 590 Hz sinusoid (fs=8 kHz).
Vs

256-point FFT of a 16-point 590 Hz sinusoid (fs=8 kHz).
Notice that although this sinusoid is NOT resolved exactly the frequency of the peak in the 
zero-padded case is closer to actual
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Windowed FFTs on Sinusoids 
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Window Comparison with Closely Spaced Periodicities
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Window Comparison with Distant Periodicities
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The FFT-DIT Algorithm

The FFT decimates the sequence and performs a DFT by processing results 

of smaller size DFTs. This is done by decomposing the N-point DFT to 2-

point DFTs and using “butterfly” operations to obtain the result. For a 

Decimation in Time (DIT) FFT algorithm the following steps are taken: 
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n
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The FFT-DIT Algorithm (Cont.)

if we define Nnkjnk
N eWnxnxnxnx /2
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Remarks: The N-point DFT is broken down to two N/2-point DFTs. We then write the 

N/2-point DFTs as a combination of two N/4-point DFTs and so forth.
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DFT  

intpo4

 0x

DFT  

intpo4

 2x

 4x

 6x

 01X

 11X

 21X

 31X

 0X

 1X

 2X

 3X

 1x

 3x

 5x

 7x

 02X

 12X

 22X

 32X

 4X

 5X

 6X

 7X

1

1

1

1

0
8W
1

8W
2

8W
3

8W

The FFT-DIT Algorithm (Cont.)
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The DFT and the FFT Complexity

The N-point DFT requires N2 multiplications and N2 –1 additions to 

compute the discrete frequency spectrum. 

The complexity of the DFT is reduced using the FFT to 

N/2 log2N multiplications and N log2N additions. 

For example if   N=4096 the DFT requires  16,777,216 

multiplications while the FFT requires  49,152   multiplications.
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FFT ALGORITHMS

IN FFT DECIMATION-IN-TIME
-the frequency-domain (output) indices are in place while the time-domain
(input) indices are bit-reversed

IN FFT DECIMATION-IN-FREQUENCY
-the time-domain indices are in place while the frequency-domain indices are
bit-reversed

VARIANTS OF FFT ALGORITHMS:
Low-Complexity "Prunned" FFTs

- For computing fewer frequency bins
- when time-domain values are systematically zero (ex: zero padded FFTs)

Radix 4 and Mixed-radix FFTs,  Gortzel Algorithm (computes only one frq. bin),
Rader, Prime Factor, Winograd, Zoom FFTs

Reference: E. Brigham, "The FFT and its Applications," Prentice Hall, NJ 1988
Links on FFT:  http://www.fftw.org/links.html
FFT laboratory:   http://sepwww.stanford.edu/oldsep/hale/FftLab.html
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FFT Applications
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FFT AND SPEECH ENHANCEMENT

•If we have speech corrupted by background noise, the spectrum 
of background noise can be estimated during speech pauses.

•Speech is enhanced in the spectral domain by subtracting the 
estimated noise spectrum from the noisy speech spectrum

•FFT-based spectral subtraction is used in military applications

•Also used in CDMA cellular IS-127 telephony standard
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FFT SPEECH ENHANCEMENT IN CDMA

Window/FFT
Overlap/add

IFFT

X

S  (n)
HP

Channel Gain

Computation

Channel Energy

Estimator

Channel SNR Noise

EstimatorEstimator

Channel SNR

Modification

Spectral 

Estimator

Voice Metric

Computation

Noise Uodate

Decision

G(k) H(k)

Update Flag

Ech(m) En(m)

v(m)

Etot(m)

Deviation
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FFT AND SINUSOIDAL TRANSFORM CODING

PHASES

FREQUENCIES

AMPLITUDES

FRAME-TO-FRAME 
PHASE 

UNWRAPPING & 
INTERPOLATION

FRAME-TO-FRAME  
LINEAR   

INTERPOLATION

SINE    WAVE   
GENERATOR x SUM ALL    

SINE  WAVES

SYNTHETIC

SPEECH

Implemented by IFFT and 
overlap&add procedure

FFT
Speech

TAN-1(.)
PHASES

FREQUENCIES

AMPLITUDES

Peak    
Picking

 . 

ENCODER

DECODER

R. McAulay and T. Quatieri, “Sinsoidal Coding,”Ch. 4, Speech 
Coding and Synthesis, W.B. Kleijn and K. Paliwal, eds, Elsevier, 
1995.
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Simple FFT Based Compression
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Fast Convolution Using the FFT

• Fast Circular Convolution

b. Fast Linear Convolution

FFTs are often used to compute efficiently convolutions of
very long sequences.  Such convolutions arise in adaptive filters
that are used in noise and echo cancellation.
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Fast N-point Circular Convolution

X

FFT

FFT

IFFT

x(n)

h(n)

X(k)

H(k)

Y(k) y(n)
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Fast N-point Linear Convolution
using the Overlap/Save
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J-DSP and Fast Convolution
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Orthogonal Frequency Division Multiplexing (OFDM) and FFTs
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