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Disclaimer

These course notes cover the fundamentals and select applications
of Digital Signal Processing and are intended solely for education.
No other use is intended or authorized. No warranty or implied
warranty is given that any of the material is fit for a particular
purpose, application, or product. Although the author believes that
the concepts, algorithms, software, and data presented are accurate,
he provides no guarantee or implied guarantee that they are free of
error. The material presented should not be used without extensive
verification. If you do not wish to be bound by the above then
please do not use these notes.
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+ Digital Signal Processing (DSP) is a branch of signal processing
that emerged from the rapid development of VLSI technology
that made feasible real time digital computation.

* DSP involves time and amplitude quantization of signals and
relies on the theory of discrete time signals and systems.

* DSP emerged as a field in the 1960s.

» Early applications of off line DSP include seismic data analysis,
voice processing research.
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Digital vs Analog Signal Processing

Advantages of digital over analog signal processing:

flexibility via programmable DSP operations,

 storage of signals without loss of fidelity,

+ off line processing,

* lower sensitivity to hardware tolerances,

* rich media data processing capabilities,

 opportunities for encryption in communications,

* Multimode functionality and opportunities for software radio.

- IBadvantages :

+ Large bandwidth and CPU demands
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DSP Historical Perspective

Nyquist Theorem 1920's.
Statistical Time Series, PCM 1940's.

Digital Filtering, FFT, Speech Analysis mid 1960s (MIT, Bell
Labs, IBM).

Adaptive Filters, Linear Prediction (Stanford, Bell Labs, Japan
1960s).

Digital Spectral Estimation, Speech Coding (1970s).
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DSP Historical Perspective (2)

« First Generation DSP Chips (Intel microcontroler, TI, AT&T,
Motorola, Analog Devices (early 1980s)

« Low-cost DSPs (late 1980s)
« Vocoder Standards for civilian applications (late 1980s)

« Migration of DSP technologies in general purpose CPU/Controllers
"native” DSP (1990s)

« High Complexity Rich Media Applications

« Low Power (Portable) Applications
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DSP Applications

Military Applications (target tracking, radar, sonar, secure
communications, sensors, imagery)

Telecommunications (cellular, channel equalization, vocoders,
software radioetc)

PC and Multimedia Applications (audio/video on demand, streaming
data applications, voice synthesis/recognition)

Entertainment (digital audio/video compression, MPEG, CD, MD,
DVD, MP3)

Automotive (Active noise cancellation, hands-free communications,
navigation-GPS, IVHS)

Manufacturing, instrumentation, biomedical, oil exploration, robotics

Remote sensing, security
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Communications and DSP

« DTMF (use of the FFT and digital oscillators)

« Adaptive echo cancellation (Hands-free telephony, Speakerphones)

« Speech coding (speech coding in cellular phones)

*  Modem (data/computer connectivity)

« Software radio (multi-mode/multi standard wireless communications)
« Channel estimation (equalization)

« Antenna beamforming (space division multiple access - SDMA)

« CDMA (modulating with random sequences)
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Typical Digital Signal Processing System

Nowdays LPF and A/D integrated DSP chip

x(t) m X()  [sample| X(nT) gl,g,tzl
L laam | e

Processor

f

s

o Reconstruction
‘Antialiasing

o [Ty [
L

D/A

Nowdays LPF and D/A integrated

Remarks: The diagram shows the sampling, processing, and reconstruction
of an analog signal. There are applications where processing stops at the digital
signal processor, e.g., speech recognition.
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Symbols and Notation

X, ()| -,r=x(nT)=x(n) ;discrete—time input
y(n) ;discrete —time output

H(.) ;transferand frequency response functions
h(.) ;impulseresponse (systemfunction)

n ;discrete — time index

Remarks: In general and unless otherwise stated lower case symbols will
be used for time-domain signals and upper case symbols will be used for
transform domain signals. Bold face or underlined face symbols will be
Be generally used for vectors or matrices.
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Continuous vs Discrete-time

Continuous-time (analog) Signal

X x(m)

Discrete-time (digital) signal

o T ot

t n

x(t) J{ x(n)

Remarks: A continuous-time signal is converted to discrete-time using sampling and
quantization. As a result aliasing and quantization noise is introduced. This noise
can be controlled by properly designing the quantizer and anti-aliasing filter.

2009 Copyright 2009 ©Andreas Spanias 12




Quantization Noise

quantized waveform
X,(1)

quantization noise

AN rr ¢ e,(t)

N !

sampling period X, (1)

T analog waveform
e -

x, (1) =x, (1) +e, (1)
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Simplest Quantization Scheme -
Uniform PCM

Performance in terms of Signal to Noise Ratio (SNR)

SNR,c,, =6.02R, + K,

where R, is the number of bits and the value of K,
depends on signal statistics. For telephone speech
K,=-10
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Oversampling A/Z or X/A Conversion

Integrated oversampling and 1-bit quantization

Very compact and inexpensive circuitry (some low power applications
as well)

Lowers analog circuit complexity with a modest increase in software
(DSP MIPS) complexity

Uses concepts from multirate signal processing and Delta Modulation

Will be described in the context of multirate signal processing
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Time vs Frequency Domain

time-domain frequency-domain

x (1) IX(H1

x(t) 1X(H1

.

[ t 0 f

Remarks: Slowly time-varying signals tend to have low-frequency content
while signals with abrupt changes in their amplitudes have high frequency content.
The frequency content of signals can be estimated using Fourier techniques.
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Example: Time vs Frequency Domain Speech

Time domain speech segment °

o . M P % 3 / 1 : B
Time 5) [e—
Periodic waveform gives harmonic spectra

Time domain speech segment w
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Some Important Signals

Discrete-time Impulse 1

S(n) =

Think of signals as a weighted sum of impulses.
Impulses help in analyzing signals and filters
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Some Important Signals (3)

The sinusoid Period T

sin(w?) = sin(27” f) =

0=27f= 27” units: o(rad/s) f(Hz) T(s)

Sinusoids are used in analyzing or synthesizing acoustic and other signals
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Some Important Signals (4)

The sinc function sidelobes mainlobe

t | ’ \

sinc(t) =

b 2n

Sinc functions often appear in signal and filter analysis
particularly when considering frequency domain behavior
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Some Important Signals (5)

Random noise

Encountered in communication systems and other application
Characterized by their mean and variance
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Representing Periodic Signals with Sinusoids

Fourier series: Trigonometric form:
x(t)=a,+ Y a,cos(ka,t)+ ) b, sin( ke,t)
k=1 k=1
Fourier series: Complex (magnitude/phase) form:
* .
Preferred in engineering-- > x(l) = Z Xke'/kw"t
k=-o0

Xk are complex F.S. coefficients and provide spectral magnitude and phase info

Jka,t

and € =cos(kw,t)+ jsin(kow,t)
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Fourier Series Analysis Example

Representing a Periodic Pulse Train as a Sum of Harmonic Sinusoids

x (1)

I I

d

/2
X, = 1 le *'dt = 4 sinc ko, d
T 7, T 2

-d

Remarks: A periodic pulse signal has a discrete F.S. spectrum described by
samples that fall on a sinc (sinc(x)=sin(x)/x) function. As the period
increases the F.S. components become more dense in frequency and weaker
in amplitude. If T goes to infinity periodicity is lost and the F.S. vanishes.
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Fourier Series Example (2)

Harmonic Spectrum

X k
d
—=1/4 20, ,
T — harmonics
o 3w,
——
w
Fundamental frequency a,
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Fourier Series Example (3)

d/T=1/5

e O\T LILE
4n

e S P?TTTTWWWTTT?P
"\

Use Sinusoids to synthesize a periodic pulse using the
Fourier series (only one period shown)

10 sinusoids

1 sinusoid

/\/ 50 sinusoids
% 2 sinusoids

3 sinusoids

e =
w 100 sinusoids
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Fourier transform of a time-limited pulse
The Continuous Fourier Transform (CFT) Equations (Represent a single pulse by sinusoids)
The Fourier transform / Analysis Expression Given the signal X (t)
e
- jot
X (0) = jx(t)e jot g )
- — f—
The inverse Fourier transform _— Synthesis Expression “t
17 0
jot
x(t) = — [ X (0)e’”do az wd
2r = “Jetdr = d si
B X(w) = e t = d sinc —
. L. . -d /2

A Fourier transform pair is designated by: X (t) o X (a) )

Remarks: Both time and frequency are continuous variables. The CFT can Remarks: Note that a time-limited signal has a non-bandlimited CFT spectrum.

Pnr— B quency . T The sinc function has zero crossings at integer multiples of 27/d. As the pulse

handle non-periodic signals as long as they are integrable. Periodic signals can P . . ey 1o R Lol

be handled using the i 1 d CFT " width increases the sinc function “shrinks”. In the limit, if T goes to infinity

¢ handlec using the Impulse an properties. (i.e., pulse becomes D.C. signal) the sinc function collapses to a unit impulse.
2009 Copyright 2009 ©Andreas Spanias 128

2009 Copyright 2009 ©Andreas Spanias 127




Fourier transform of a time-limited pulse(Cont.)

X (w) = d sinc (%J

e

2n /d 4n/d
time domain frequency domain
a transform pair
pulse sinc

’ i =
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Symmetry of the Fourier transform

if x(t1)e X(w) then X(t)© 27zx(-w)

(time-limited) x(l) (non band-limited)  X{(¢)

=

T ‘, T
t 0]
(non time-limited) ’\X(t) (bandlimited) o x(_w)
i - |
{ 0]
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The Time-Domain Convolution (Filtering) Property
x(t) o X(ow)
h(t) < H(w)
h(t)*x(t) & H(w)X (@)

/

h(@6)*x(1) = [ h(z)x(t-r)dr

Muliplication in frequency
is essentially a filtering operation

convolution in time is multiplication in frequency

IS  H /S

'

Example: Convolution of an exponential with a pulse
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Important Fourier Transform Pairs

cos(a,t) <> 7(d(w—w,) + (@ +w,))

md(e o)
®

t -Mo 0 Mo
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Truncating Signals with Tapered Windows

Truncatlng a Cosine _
3
s()=cos(ayt) S(@)=1(5(@- 1))+ 5+ 1)
where @, =27/T, H coe o
R CFT -
L
i‘/» gl — T T l (0]
1 B
o T ' -, To @, o -
wiy={ 1 051< T = '““{Lf”) 2548
10: otherwise 2
F
5,0 = () w(e) (
. e =
H —
i
o T, ' -, fo o, o t [0}
20 . o . . . 1.33B
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Truncating Speech Truncating Speech (tapered window)
|
' [ | .
R R Y L
Iy I | CFT | CFT |
Wil — «— I
" [l | | i
Normalized frequency X 7 rad/sec Normalized frequency X 7 rad/sec
136
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The Sampling Process

A bandlimited signal that has no spectral components at or above
B can be uniquely represented by its sampled values spaced at
uniform intervals that are not more than n/B seconds apart.

T <”
B

or a signal that is bandlimited to B must be sampled at a rate of
o, where

@, 22B or fszE
p/a

N 2t

analog signal sampling digital signal
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Example: Audio - Bandwidth

200 - 3200 Hz

50 - 7000 Hz

50 - 15000 Hz

20 -20000 Hz

Basic Telephone Speech
Intelligible
Preserves Speaker Identity

Wideband Speech
AM-grade audio

Near High Fidelity
FM-grade Audio

High-Fidelity
CD/DAT Quality Voice

Copyright 2009 ©Andreas Spanias

Example: Sampling of Audio Signals

Format Bandwidth Sampling frequency
Telephony 3.2kHz 8 kHz
Wideband audio 7 kHz 16 kHz
High-fidelity, CD 20 kHz 44.1 kHz
Digital  audio  tape | 20 kHz
(DAT) 48 kHz
Super audio CD | 100 kHz
(SACD) 2.8224 MHz
DVD audio (DVD-A) | 96 kHz 192 kHz
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Sampling and Periodic Spectra

x(2) X(o)

0 -B B

x, (1) X, (o)
bttt AT

OT

2009

~0,-B' B o,
0
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Signal Reconstruction using an Ideal Filter

ALIASING (UNDERSAMPLING) ® <2B

X, (@)

0
X(w) )]
aliasing
the signal can not be recovered perfectly even with an ideal filter
6 t - B (‘) B w only a distorted version of the signal can be recovered
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. Example
Oversampling o >>2B R
- t' c Differential equation'
® ' YO a4y 1
S ey = pax(0)
dt RC
X ()
Transfer function: Frequency response function:
/\ Guard bands /\ /\ 1 1
: H(s)=——— H(w)=——~
-, —B(‘) o, 260 ) 1+sRC 1+ joRC
i x(t) = sin( wt . ‘g
Oversampling relaxes the requirements on antialiasing filters if ( ) ( ) ~ sinusoid in
then ; ;
sinusoid out
It is used in Z/A (A/ Z) A-to-D converters 55 . —_—
y*(t) = |H ()|sin(wt + ZH (v))
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Example - Impulse Response

Consider the circuit below with R=1M, C=1x10°

R
e c an() 1 1
k() 0 O~ TR =3a00
b
The solution: h(t) =—e RC _— e_z for t>0

RC

o

t
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1-45

Example - Convolve and obtain an output

Consider the RC with impulse response h (t) =e -t u (t)

and the input x(f) = M(t) - M(f - 1) 4[]7

y(t):J.e_’dr =1-e’ for 0 <t<l1
0
t

y(t) = _‘-e”dr = —e 4 D

t—1

for ¢t > 1

S I

| ; t f
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Discrete-time Linear Systems

Digital Filters

Jan. 2009 Copyright 2009 ©Andreas Spanias i

Discrete time Linear Systems — Digital Filters

x(n) b O

The output is produced by convolving the input with the impulse response

y(m =3 h(m)x(n—m) = h(m) *x(n)

=—0

This operation can also involve a finite-length impulse response(FIR)

sequence L
y(n) = > h(m)x(n—m)

An FIR filter is programmed using a multiply-accumulate instruction

Jan. 2009 Copyright 2009 ©Andreas Spanias no2

Some Definitions

*A digital filter is linear if it has the property of
generalized superposition

*A digital filter is causal if it non anticipatory,
i.e., the present output does not depend on future
inputs.

*All real-time systems are causal.

* Non-causalities arise in image processing where
the signal indexes are spatial instead of temporal.

* Unless otherwise stated all systems in this
course will be assumed causal.
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Some More Definitions

x(n)  x(n-1) x(n) x(n-1)
or ;unit delay

b
x() L x(m) ;signal scaling by a

filter coefficient

X(n)
/(\@— x(n)+x(n-1) ;signal addition
x(n-1)
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IIR Digital Filter Structure

Qedback

y(n) = Z biX(n—i)—Z a;y(n-i)
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Jan. 2009

FIR Digital Filter Structure

y(n) = bx(n-i

Copyright 2009 ©Andreas Spanias I

Two i/p dp Equations for Digital Filters

x(n) L@

One can compute the output using the convolution sum

y(n) = ih(m)x(n—m) = ix(m)h(n—m)

=—00 m=—co

or by using the difference equation

y(m =Y bx(n-i-3 aymn-i

Remark: The impulse response h(n) can be determined by solving
the difference equation.
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Unit Impulse

The analysis of digital filters in the frequency domain is facilitated
using sinusoids. In the time domain a unique input signal is used
for analysis, namely the unit impulse. That is defined as:

Jan. 2009

5(n)

‘0 — n
6(”): { z) for n=0

elsewhere

Copyright 2009 ©Andreas Spanias I




Signal Representation with Unit Impulses

Any discrete-time signal may be represented by a linear combination
of unit impulses

is represented by:
X(n)=-56(n+2)+156(n+1)+25(n)
—o(h—=D+56(n-2)-255(n-3)
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Impulse Response

The response of a digital filter to a unit impulse is known as
impulse response and is given by

h(n)=b,6(n)+bd(n-1)+...+b d(n-L)-
ah(n-1)-ah(n-2)-...—a,,h(n—M)

3(n) . h(n)
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Impulses as input to source gstem LPC Vocoders

Vowels are typically synthesized by exciting a filter representing the
mouth and nasal (vocal tract) cavity with a train of periodic impulses

pitch period

/x(n):Z§(n—ir)

/ 7 digital filter
~—8
—e

VOCAL SYNTHETIC
w TRACT .
SPEECH

FILTER

il
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Finite Length Impulse Response (FIR)

If the digital filter has no feedback terms the impulse response is
finite length

h(n) = b0§(n) + bl(S(n -D+...+ bL5(n -L)
Note that

h(o) = bO Remark: The filter has a finite-length
impulse response and is called FIR. The
h(l) = b1 values of the impulse response sequence
are the coefficients themselves. The filter
h(Z) — b2 is always stable.

h(L)=b,
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Example — The Moving Average Filter
- .
n=——>» x(n-1I
y(n) L+1§ (n—1)
h(n):—1 {o(nN)+o(n—-1)+...+5(n—-L)}
L+1

1
h(n)=—— 0<n<L
(") L+1

Remark: The moving average is essentially a low-pass (smoothing)
filter. Later on we will see that this filter is also optimal in
estimation problems.
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J-DSP Simulation of Averaging Filter
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Infinite  Length Impulse Response (1IR)

If the digital filter has feedback terms then the impulse response is infinite
length

h(n) = ZL: bo(n—i)- i a;h(n—1i)
Example: h(n)=56(n)—ah(n-1)

h(0)=1 h()=-a h(2)=a’ h(n)=(-a,)

Remark: Note that if the coefficient a; has magnitude larger than
one the impulse response will go to infinity and hence the filter
would be unstable.
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IIR — Another First Order Example

h(n) = 0.25(n) +0.8h(n —1)
h(n)=0.2(0.8)" n=0

Remark: This particular IIR filter is also a low-pass filter
behaving in similar manner like the the averaging FIR filter.
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IR — Another First Order Example (Plot)

h(n)=0.2 (0.8)" n>0

Mj L TTITTT?&?W&?%«?’
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Frequency Responses

|HE™)| [HE™y
dB
1+27
0 1:‘ 0 1:‘ Q
dB . dB .
1/(1 -0.9z7) 1/ (1+0.927)
0 T 0 T Q
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Impulse Response and Stability

For the causal digital filter
y(n)= > h(m)x(n—m)
m=0

Bounded Input Bounded Output (BIBO) stability is defined as

0

> |h(k)|<

k=0

The condition above is guaranteed if

‘p i ‘ < 1 for all i=12...,M

Jan. 2009 Copyright 2009 ©Andreas Spanias v
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An Unstable Filter

al0f 10 all 118 a2 00 a

a]: 00 a[fl 0.0 a8 0.0 a[t

%)

i

Name: [

Arpibede  v|  seale F linear © 9B

3R

b0 0

0 3

I g onom Plot [mise <] Ads: [mtn -]
Graphvaluesitats | Close | Help

J Jarvm Applet s
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Example of Transient and Steady State Response

un)=1 n>0 u(n) ——02)

(N =y "(N)+y*(n)=-0.8(0.8)" +1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
|
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Steady Sate Sinusoidal Response of
Digital Filters

A special case of interest is the steady-state response to input sinusoids
and is formulated as follows. For the IIR filter

L M
y(n)=> bx(n-i)-> ay(n-i
i=0 i=1
The frequency response function is given by:

by +be® +be 4+ . +be

H(e™) : . _
1+ae ™ +a,e’* +..+a,e ™

Jan. 2009 Copyright 2009 ©Andreas Spanias n 2

Steady Sate Sinusoidal Response of
Linear Discrete Systems (Cont.)

The frequency response function is periodic and an example of the
steady state sinusoidal response is given below

if:
x(n) = sin(nQ)

then:
y*(n) =|H (e!")|sin(Qn + ZH (e*))
2 af .
Q= T ;normalized frequency

S

Jan. 2009 Copyright 2009 ©Andreas Spanias 3

Example of Steady State Sinusoidal Response

The filter is excited by a 500 Hz sinusoid and the
Sampling rate is 2000Hz.

x(n) = sin(22n500/ 2000) = sin(%")

. 02 . zn 02
n)=———|sm(—+arg(———
YW o Sy (g




Jan. 2009

Frequency Response Plot

0.5

0.1

0.2

HEe?)=——"—
™) 1-0.8e7 %

0 1000 Hz
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The Z-Transform in DSP

Jan. 2009 Copyright 2009 ©Andreas Spanias 111

The Z Tansform

*The z-transform plays a similar role in DSP as the Laplace
transform in analog circuits and systems.

«It provides intuition that is sometimes not evident in time-
domain analysis

*Simplifies time-domain operations — time domain-convolution
maps to Z-domain multiplication

*Used to define transfer functions

*Could be used to determine responses of systems using a table
look-up process

Jan. 2009 Copyright 2009 ©Andreas Spanias -2

From the Laplace Transform to the Z Transform

H() = H(@©

z-domain transfer function

_b
-1

1+a,z

s-domain transfer function

1
H,(S)=——
() 1+sRC

cl = i—0)
—

Jan. 2009 Copyright 2009 ©Andreas Spanias 3

—» H,(z)=

The Z 'Fansform- Definition

Given the signal: x(n)
o0
its Z-transform is X (z) = Z X(I'])Z_n
n=-ow
For causal signals, i.c., X(n) =0 for n<0
o0
X(z)=>) x(n)z™"
n=0

Jan. 2009 Copyright 2009 ©Andreas Spanias 4




Linearity:

Selected Properties of the Z Tasform
if: X(n) v d X(Z) and y(n) <> Y(Z)

then

ax(n)+ By(n) & aX (z)+ BY(2)

Shifting:

Convolution:

x(n+m) <> 2" X(2)

x(n)*y(n) & X(2)Y(2)

Scaling (bandwidth expansion): A " X ( n) <> X ( z / a)

Jan. 2009
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Delay of 7 Samples

X(n=7) < 27X (2)

~— o

i
|

Jan. 2009 Copyright 2009 ©Andreas Spanias -6

Unit-Impulse:

Sinusoids:

Selected Z Tansform Pairs
S(n) 1

77 sin(Q)
1-227"cos(Q)+ 272’

{sin(Qn),n >0} { z

|
g

1-2"cos( Q)
1-227"cos( Q)+ 2

z

2

{cos(Qn),n>0} e {

Sampled Unit-Step: {In>0} o {#,\z\ > 1}

Exponential Signals: {a",n > O} P {Z z a Lzl > \a\}

Jan. 2009
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The Transfer Function

L M
y(n)=> bx(n-i)- ay(n-i
i=0 i=1
To write the transfer function put the difference equation in the z-domain

y(n) & Y(2)

x(n) < X(z) and

Y(z)=ZL:bi X(z)z"—iaiY(z)z’i
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The Transfer Function (Cont.)
L _ M )
X(2) Qb zH)=Y(@)a+) a z7")
i=0 =1

The transfer function H(z) is defined as:

_Y(z) _by+bz'+..+bz"

H(z) =S = -
(z) l1+az +..+ayz
2 bz
H(z)=—4=%—
() M 4 Note that feedback
1+ Z a; Z — terms are in the
i=1 denominator
Jan. 2009 Copyright 2009 ©Andreas Spanias T

The Transfer Function and the Impulse Response

Convolution maps to multiplications in the z domain
y(n) =x(n)*h() < Y(z)=X(2)H(2)

It can be shown that a transfer function H(z) is related to the
impulse response sequence h(n) by:

H(z)= i h(n)z™"

h(n) < H(z)

Jan. 2009 Copyright 2009 ©Andreas Spanias 1-10

Example: Write the Transfer Function of a First Order IIR Filter

Step 1: Write the Difference Equation
y(n)=0.2x(n)+0.8y(n—-1)
Step 2: Transform all signals to the z domain
y(n) & Y(2) X(n) < X(2)
yin-1) < z27'Y(2)

Jan. 2009 Copyright 2009 ©Andreas Spanias st}

Example: Transfer Function of a First Order IIR Filter (cont.)
Step 3: Since z-transform is a linear operation I can write
Y(2)=02X(2)+0.827'Y(2)
Step 4: Form the ratio Y(z)/X(z) to get the transfer function
Y(z) 02 02z

H(z)= = =
2) X(z) 1-0.8z2" z-0.8

Note below that the impulse response can be written by inspection of H(z)

h(m=02 08 u(n) < H(z):% 12[>0.8
Z—-0.

Jan. 2009 Copyright 2009 ©Andreas Spanias 12




The Transfer Function of FIR Systems

For the FIR filter the transfer function is:
H(z)=b,+bz " +..+bz " =>"b 2"

this is also in agreement with

H(z)= ZL: h(n)z™"

Note that for FIR filters

{h(0), h(D),.., h(L)}= {b,.b,,... b, }

Jan. 2009 Copyright 2009 ©Andreas Spanias 113

Equivalent Filter Realizations

’—* y(n)
x(n) A S

Direct Form 1

Direct Form 2

0.4 3

saves memory
Jan. 2009 Copyright 2009 ©Andreas Spanias 1m-14

Poles and Zeros of H(z)

In general the transfer function is rational; it has a numerator and a
denominator polynomial.

The roots of the numerator and denominator polynomials are called the
zeros and the poles respectively.

Pole-zero decompositions of H(z) are quite useful and provide intuition in
signal analysis and filter design.

H(2)=6 Z=6)2=6)-2=C) _g liM:[(Z—&)
(Z-p)(Z—P,)-.(Z—Py) H(z_p_)

where G is a gain factor

Jan. 2009 Copyright 2009 ©Andreas Spanias s

Example: Poles and Zeros of H(z)

02 Z « the zero (O) of this transfer function is at z=0
H(z)=
( ) - m « the pole (X) of this transfer function is at z=0.8

0.5

©

Imaginary part
>~

-0.5

-1 -0.5 0 0.5
Real part
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Example: Poles- Zros of a Second Order System

1-1.3435 27" +0.9025 27>

Poles and Zeros and Stability

-1

l+a,z'+..+a,z "

by evaluating on the unit circle, i.e. for Z = @ e

b, +be ' +...+b et
l+ae @ +..+a,e ™M

H(e!) =

Jan. 2009 Copyright 2009 ©Andreas Spanias 19

H(2)=
1-0.45z7"'+0.5527* The poles are related to the stability of the filter since they are
Note that the filter related to the impulse response of the system. In fact, the poles of
(Z—.95€‘j450 )(z—95e” J'45°) coefficients are For stability all the poles must be inside the unit circle, that is
H(2)= (1—74166 )(2—74166 77 real valued and
therefore poles
Im X — poles and ZTrOS oceur mn ‘ n‘ <1 for all i=1,2,...,M
X 0 - zeros complex .
0 conjugate pairs.
Re IIR filters may be all-pole or pole-zero and stability is always a
concern. FIR or all-zero filters are always stable.
0
X
Jan. 2009 Copyright 2009 ©Andreas Spanias .17 Jan. 2009 Copyright 2009 ©Andreas Spanias 18
The Frequency Response Function The Frequency Response Function (Cont.)
The transfer function is The frequency response function and is a complex and periodic
1 L With period 20. The normalized frequencies £2 are associated to the
H ( 7 ) b 0 + b 1 z + ..t b L z sampling frequencies f; by

/ Sampling period

QzaoT=27rL

/ \ fs\
rad rad/s Sampling frequency
where f is the sampling frequency and f is any frequency of
interest. In practice, one determines the frequency response up to

half the sampling frequency (fold-over frequency).

Jan. 2009 Copyright 2009 ©Andreas Spanias 1120




The Frequency Response Function (Cont.)

T 2n
Foldover Frequency

T 1

0 fsl2 fs

*The frequency response is usually plotted w.r.t. normalized frequencies (£2)

+The frequency response is periodic with period f; (2 7T)
«Since frequencies of interest are up to the bandwidth of the analog signal

the spectrum is usually plotted up to /2, (7T ) the foldover frequency

Jan. 2009 Copyright 2009 ©Andreas Spanias 121

The Frequency Response and Poles and Zeros

The magnitude frequency response function

H (e =64

The phase frequency response function

arg(H(e")) = Y arg(e™ ~¢) - Y arge™ - p)

Jan. 2009 Copyright 2009 ©Andreas Spanias m-22

Remarks on Effects of Poles and Zeros on H(ei®)

*Poles tend to create peaks in the magnitude frequency response
Zeros tend to create valleys in the magnitude frequency response

*Very selective filters are designed efficiently by placing poles
close to the unit circle

Sharp notches are achieved efficiently with zeros very close to
the unit circle

*A sharp notch in the frequency response needs many poles (high
order) if we are restricted to an all-pole filter (not efficient).

*A sharp peak in the frequency response needs many zeros (long
or high order FIR) if an all-zero filter is to be used (not efficient).

Jan. 2009 Copyright 2009 ©Andreas Spanias 123

Magnitude and Phase Response

The magnitude and phase response of
Magnitude Response
Re
0.5
0 ™~

X 00
o 2 % 128
— 1

0—zeros ° 3> Foldover Frequency
X - p0|65 0 fsh2 fs
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Zero Locations and Frequency Response

Jan. 2009

foldover

Copyright 2009 ©Andreas Spanias 1125

Pole Locations and Frequency Responses

As the poles move outwards we get sharper peaks and if the poles
are on the unit circle we get an oscillator.

11126
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Moving poles inwards stabilizes numerically a filter

example transient

H(z/y)=

Bandwidth Expansion

y'h(inye H(Z/y) 0<y<l

A M

f

Stabilizing a Filter Using Pole Scaling

The scal

ing property of the z-transform is exploited for bandwidth expansion in LPC vocoders

Jan. 2009

127
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Computing Filter Responses Using the
Inverse Z-Transform

Partial Fractions: Given a the transfer function

b,z  +b,z "+ ..+ b,
H(z) = = M 1
™ +a,z" "'+ .+ a,,

for distinct poles write H(z) as:

z z
H(z)=cy+C¢,——+...+Cy ———
Z—p Z— Py

Jan. 2009 Copyright 2009 ©Andreas Spanias 1129

Example: Find the Impulse Response of the Filter

xm) * i y(n)

2
7"+ z z
H(z)= » =9-- _
0= H(z)=9 % -8 %,
1)" 1"
h n =9 ( _j -8 ( _j & 0
(n) 5 3
Jan. 2009 Copyright 2009 ©Andreas Spanias 11-30

Filter Configurations

H (@) H.(2)

Y(2)

X(2)

H,(2)

X(z) Y(2)

— H@H,@)+H,@) —

Jan. 2009 Copyright 2009 ©Andreas Spanias e

Use z transforms to change the filter structure
o

Lo 0 _
o

Jan. 2009 Copyright 2009 ©Andreas Spanias 32




J-DSP Simulation

e ]

RORARAANANE

Jan. 2009
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H

SO A

Magnitude Response (48)

Interesting Transfer Functions
Long Term Prediction Synthesis Filter

1 1
Example p=10>> H (Z) = m

(2)=

-p
1+apz

«Called long term because p is a long-term delay
*Used in Vocoders

VU

VAV

0 100
0 o1 o0z 03 o0s 05 o8 07 08 08 1 0 o1 02 03 04 05 06 07 08 03 1
NNNNNNNNN d requency (Nyaust == 1) Normalized raquency (Nyauist = 1)

AN Awaviiv
]

%4 v v

Phase (dagroes)
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LTP excited by a random signal
W M,

=30
1-0.95z
Frequency response

1]
WL L LA

WAVAVAVATAV/VAVAVAVAVIVATAY)
= 0 01 02 03 04 05 06 07 08 08 1

[ I ,,,,,,,,,,,, o oot -
5wl

Jan. 2009

Impulse response
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d D Simulation of LTP

=
[
[
(=
[
[
=
=
[
="

=
Jan. 2009 Copyright 2009 ©Andreas Spanias 1136




Interesting Transfer Functions
Al Rle Filters

H ( Z) = bo Typically used in speech processing
M i (vocoders) as well as in spectral
1+ Z a; Z estimation applications

Jan. 2009 Copyright 2009 ©Andreas Spanias 1137

Interesting Transfer Functions
All Ble Filters (2)
b,

H(2)=—5 >
1+> a 2"
i=1
M — VOCAL / SYNTHETIC
WW N * '> > TRACT - seecH

FILTER

Jan. 2009 Copyright 2009 ©Andreas Spanias 138

Interesting Transfer Functions
Digital Oscillators

If we realize the z-transform of a sinusoid as a transfer function and
we excite it with a unit impulse we get a sinusoidal output

z\>1}

27" sin(Q)
1-2z7"cos(Q)+ 272’

{sin(Qn),n >0} {

If we excite H(z) below
B 77" sin(Q)
1-2z7"cos(Q)+27°

H(2)

with 8(n) then the output will be a sinusoid

Jan. 2009 Copyright 2009 ©Andreas Spanias 11139

Interesting Transfer Functions
Digital Oscillators (2)

Note that H(z) has its poles on the unit circle

H(2)= z7'sin(Q) B zsin(Q)
1-22"cos(Q)+27%  (z—e')(z-e7?)
P
Jan. 2009 Copyright 2009 ©Andreas Spanias. 11140




Interesting Transfer Functions
Digital Oscillators (3)

278in(Q)
1=2cos(@)z" 4177

H(2)=

d(m +

Jan. 2009 Copyright 2009 ©Andreas Spanias
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Column Frequencies

0.697 kHz

0.77 kHz

0.852 kHz

0.941 kHz

Jan. 2009

DTMF Applications and
Digital Oscillators (2)

Dual Tone Multi-frequency Encoder

. e |
Row Frequencies Dig. Osc
1.209 kHz 1.336 kHz 1.477 kHz Fow

[ & 1

El Analog
| Comversion

(o] |

| Dig Osc
Colrmn

Copyright 2009 ©Andreas Spanias 1m-42

DTMF Functionality

#  Generates dual-tone-multi-
frequency (DTMF) tones
used in landline telephony

applications.

*

The tones can be played back
using the J-DSP provided
sound player, and used in a
DSP simulation.

y =cos(27 f,nT)+cos(27z f,nT)

where f, and f, are chosen from the tone frequencies
(697, 770, 852, 941, 1209, 1336, 1477 (H2)). The

sampling frequency is 8 KHz, i.e., T = 0.125ms

o Sl

Jan. 2009 Copyright 2009 ©Andreas Spanias

1143




Design of FIR Digital Filters

FIR Digital Filters

Advantages:
Linear Phase Design
Quite Efficient for designing notch filters
Always Stable

Disadvantages:
Requires High Order for Narrowband Design

Applications:
Speech Processing, Telecommunications
Data Processing, Noise Suppression, Radar
Adaptive Signal Processing, Noise Cancellation, Echo
Cancellation, Multipath channels

Jan. 2009 Copyright ©2009 Andreas Spanias W1 Jan. 2009 Copyright ©2009 Andreas Spanias. v 2
FIR Digital Filters FIR Filter Frequency Response
v jo - i -jLo
X(n) HEe"™)=Db,+be ™ +..+be
L o ) f
y(n) =2 bx(n-i = a7 f
i=0 S
<
Y(2) =b,X (2)+b,X ()27 +...+b X ()" .
Y (z _ _ II
H(z):—( ) =b,+bz"'+..+b 27"
X ( z ) foldover
Jan. 2009 Copyright ©2009 Andreas Spanias v 3 Jan. 2009 Copyright ©2009 Andreas Spanias vV 4




LINEAR PHASE DESIGN

Linear Phase (constant time delay) FIR filter design is important
in pulse transmission applications where pulse dispersion must
be avoided. The frequency response function of the FIR filter is
written as:

HE*)=h +h e +b, e +..+h e
where

HE?) =M(©Qe ™

M(@Q)=|H()|  ®(Q)=arg(H ("))

GROUP DELAY

The time delay or group delay of a filter is defined as
dd (Q)
dao

T =

therefore if @ (Q ) is a linear function of €2 then 7 isa
constant.

7 is given in terms of samples
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LINEAR PHASE AND IMPULSE RESPONSE SYMMETRIC AND ANTI-SYMMETRIC
SYMMETRIES LINEAR PHASE FILTERS
It can be shown that linear phase is achieved if Two Anti-symmetries for L=even or L=odd for
h(n) =h(L - n)
where h(n) is the impulse response of the filter. For L = odd h(n) = _h( L- n)
L-1
=2
H(z)= z h (n)(z N4 oz-kem ) Two Symmetries for L=even or L=odd for
n=0
e h(n)=h(L -n)
P o L
He)=e 2 > 2h(n) cos[Q(—— nD
n=0 2
Jan. 2009 Copyright ©2009 Andreas Spanias w7 Jan. 2009 Copyright ©2009 Andreas Spanias W os




EXAMPLES OF SYMMETRIES

EXAMPLES OF PHASE AND SYMMETRY IN h(n)

@
[0
L=4 L=3 L=4 g
h(n) h(n) %; ; '
il I L b
0ok 0 0 ¥
h(n) _ h(n) _ ~ P
L=4 L=3 L=4 “mv’ .
g
\ | | :
0 { | 0 I I 0 I | —
O et ey 2%
Jan. 2009 Copyright ©2009 Andreas Spanias w9 Jan. 2009 Cop. _ |

Symmetries and Linear Phase Simulated with J-DSP

il

i — |
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Fourier Series Design Example

For the ideal low pass filter the impulse response sequence is an
infinite length sampled sinc function. Lets say the sampling
frequency is 8 KHz and we wish to have a cutoff frequency at
2 KHz. This results in

f 2000 &

Q =2r*=2r——=—
f, 8000 2

That is
[H, @)
T z Q
2 2
Jan. 2000 Copyright ©2009 Andreas Spanias I




Fourier Series Design Example (Cont.)

The ideal impulse response hy(n) is given by

REALIZATION

1 . nr
hy(n) = —sinc | — [,n =0,£1,£2,... (s y(n)
2 2
For an FIR filter of 11 coefficients
1 1 1 1 1 1 e e
h(n) =9-- '0’057 50’_7 7097 S~ 505_7 5057 50505- . X(l‘l) -1 H -1 -1 H -1 -1
kY4 7 7w 2nx 3n 5w z z z z z
N _ _ . 77! H 77! 77! H 77! 77!
This impulse response is not causal, however a shift operator with
5 delays (z'°) will convert it into a causal DF.
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Fourier Series Design Example (Cont.) Fourier Series Design Example L=32
1 1 1 1 1 1 1 1. n-16)r
boziab2:_75b4:7 7b5 :75b6:7 5bg:_77b10:7 bn = —S8inc Q ,n=0,1,....32
b4 R4 V4 2 V4 k74 St 2 2
~ 20 5 20
; o ;l 0
§ -20 g -20
£ o - [A/a) V
T Oy
= a0 2T 02 03 o4 05 o5 o7 08 085 1
. 0
_ g o0
;:_’, -200 § 1000
:Dv): -400 g -1500 P~ I Dl
* 600 720000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T E—a—— o o5 Normalized frequency (Nyquist == 1)
Normalized frequency (Nyquist == 1)
VB Jan. 2009 Copyright ©2009 Andreas Spanias v 6
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Fourier Series Design Example L=64

M=32)7 ) 0164

n

b = lsinc
2

g

ek

o 01 02 03 04 05 06 07 08 09 1
Normalized frequency (Nyquist == 1)

Magnitude Response (dB)

7 g -1000
8 -1000 g
g g
3 3 -2000
o Py
H 3
g 2000 £ -3000
T T
-3000 -4000
0 01 02 03 04 05 06 07 08 09 1 o o1 02 03 04 05 06 07 08 09 1
Normalized frequency (Nyquist == 1) Normalized frequency (Nyquist == 1)
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Truncating with Hamming Window L=64

(n-32)x

b, = %sinc x Hamming(L)

o
g

°

T

2 03 04 05 06 07 08 09 1
Normalized frequency (Nyquist == 1)

Magnitude Response (d8)
3 &
g 8

@
g
°

°

F.S. Design; Rectangular vs Hamming Window - L=64

o Rectangular
g
3
= 0
g \V%[ ~13dB
g
S 50 A
! ~ T
2
e
= -100

0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 09 1
Normalized frequency (Nyquist == 1) H .
amming

: /

° [

Magnitude Response (dB)

o 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist == 1)

Jan. 2009 Copyright ©2009 Andreas Spanias W

Truncating in time- frequency convolution and F.S. design

Wide mainlobe = Narrow mainlobe= Ideal LPF
Wide transition Narrower transition

/ /
N 1]

*The main-lobe width determines transition characteristics

*The sidelobe level determines rejection characteristics

Jan. 2009 Copyright ©2009 Andreas Spanias WD




Truncating with Short/Long Windows and F.S. design

H(e1%)"W(ei%) |H(e9)]
‘Wide mainlobe ‘Wide transition
- w
Q
H,.(e%)*W(ei?) [H(ei%)|
Narrow mainlobe Narrow transition
— [ g
/\V \/\ - |
Q
Jan. 2009 Copyright ©2009 Andreas Spanias v 2

Notes On Fourier Series Design

*The design performed in the previous example involved truncation
of an ideal symmetric impulse response.A symmetric impulse
response produces a linear phase design.

*Truncation involves the use of a window function which is
multiplied with the impulse response. Multiplication in the time
domain maps into frequency domain convolution and the spectral
characteristics of the window function affect the design.

*The main-lobe width determines transition characteristics

*The sidelobe level determines rejection characteristics

Jan. 2009 Copyright ©2009 Andreas Spanias v 2

DEFINING DESIGN SPECIFICATIONS

() Tolerance Regions
1+dp /
1
1-dp N
Ideal LPF
ds I J
f
fp fc fs

Passband | Transition band | Stopband
1 I

Jan. 2009 Copyright ©2009 Andreas Spanias v 3

DESIGN USING THE KAISER WINDOW

The Kaiser window is parametric and its bandwidth as well as its sidelobe
energy can be designed. Mainlobe bandwidth controls the transition
characteristics and sidelobe energy affects the ripple characteristics.

} ﬂ[lf(”’“]_}
a
w(n) = ,0<n<L-1

1 (8)

a = L/2 ; associated with the order of the filter
B is a design parameter that controls the shape of the window

Io(.) is a zeroth order modified Bessel function of the first kind
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DESIGN USING THE KAISER WINDOW (Cont.)

EXAMPLES OF KAISER WINDOW

I f— : — 0
0.9
k 2 0.8
o0
I X 1 1 X 07
— + — | — 06
oX)= p
' 05
k=1 k. 2 04
0.3
02
25 terms from the Bessel function are sufficient ot/ N 5
00 20 40 60 80 100 126 140
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KAISER WINDOW DESIGN EQUATIONS
Given fp, f, T and dp, ds determine the FIR filter coefficients. DESIGN PROCEDURE
d = min( ds ,dp ) 1. Determine the cutoff frequency for the ideal Fourier Series
A= -20 log , 6 method. f, - f,
AQ =27 (f, - t,)T fo=——7F—
2. Design the ideal LPF using the Fourier Series.
. A-38 3. Design the Kaiser window
The filter order is L= —— ( +2 ) g
2.285 AQ - 4. Shift and truncate the ideal impulse response
and the kaiser parameter [ is given by h (n)=w(n) h [n — Lj 0<n<L
LPF d 5 )
0.1102 (A-28.7), A> 50
£ =10.5842 (A—-21)"*" +0.07886 (A -21),21 < A<50 Note that this procedure can be generalized for the design of
0, A <2l BPF, HPF, and BSF.
Jan. 2009 Copyright ©2009 Andreas Spanias v 7 Jan. 2009 Copyright ©2009 Andreas Spanias W 3




Design by Zero-Placement

As zeros are placed towards the unit circle the frequency
response magnitude decreases at and in the vicinity of the
frequency of the zeros.

!\/\/

foldover
Jan. 2009 Copyright ©2009 Andreas Spanias v D

Frequency Sampling Methods for FIR Filter design

Ideal frequency response
(a)

0 n/4 w2 3

Sampled ideal frequency response

N=16 samples ¢

0 n/4 n

Interpolated frequency response

(c)
0 /4 T

Jan. 2009 Copyright ©2009 Andreas Spanias v D

Frequency Sampling Methods for FIR Filter design (3)

s T e RIS .-

) ] ) S l:—

Jan. 2009 Copyright ©2009 Andreas Spanias w3

Min-Max and Parks-McClellan Optimum FIR Design
The Parks-McClellan design is based on Min-Max
Equiripple and linear phase design is possible

This class of methods involve minimizing the maximum error
between the designed FIR filter frequency response and a prototype

min }{max ‘E (e’? )‘}

{h(i)i=0,1,.,L

E(e")=W (") (H,(e")-H (™)

Jan. 2009 Copyright ©2009 Andreas Spanias v 2




FIR Filter Design Using MATLAB*

IN THE MATLAB SP TOOLBOX

cremez - Complex and nonlinear phase equiripple FIR filter design.
firl - Window based FIR filter design - low, high, band, stop, multi.
fir2 - Window based FIR filter design - arbitrary response.

fircls - Constrained Least Squares filter design - arbitrary response.
fircls] - Constrained Least Squares FIR filter design - low and highpass
firls - FIR filter design - arbitrary response with transition bands.
firrcos - Raised cosine FIR filter design.

intfilt - Interpolation FIR filter design.

kaiserord - Window based filter order selection using Kaiser window.
remez - Parks-McClellan optimal FIR filter design.

remezord - Parks-McClellan filter order selection.

Jan. 2009 Copyright ©2009 Andreas Spanias v 3

FIR Filter Realizations

Direct Realizations

H(z)= ZL: b,z

*Requires multiply accumulate instructions

Jan. 2009 Copyright ©2009 Andreas Spanias W

FIR Filter Cascade Realizations

Cascade Realizations

q
H(z)= H (biy + bi1271 + bi2272)

i=1

*Reduced Effects from Coefficient Quantization and round-off
«In Fixed-Point implementation signal scaling must be
done carefully at each stage

Jan. 2009 Copyright ©2009 Andreas Spanias v 3

Transform-Domain FIR Filter Realizations

XK(©0)

x(n), .

Xk(L)

Select Last N points

A Transform domain realization is possible using the overlap

and save and the FFT. This yields computational savings for high
order implementations. Input data is organized in 2N-point blocks
and blocks are shifted N points at a time. The data blocks and

N zero-padded coefficients are transformed and multiplied and the
results is inverse transformed. The last N-points are selected as the
result. The blocks are updated and the process is repeated.

Jan. 2009 Copyright ©2009 Andreas Spanias S




Implementing Efficiently Digital Cross-Over Using
Subtractive Operations

could also implement delay compensation z 2

/

+

LPF @ to tweeter

/

Linear Phase LPF ————— > to woofer
- With delay L/2 samples
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DESIGN OF IIR DIGITAL FILTERS

Jan. 2009 Copyright © 2009 Andreas Spanias V-1

IIR DIGITAL FILTERS

Advantages:
Efficient in terms of order
* Poles create narrow-band peaks efficiently
« Arbitrarily long impulse responses with few feedback
« coefficients

Disadvantages:

» Feedback and stability concerns

« Sensitive to Finite Word Length Effects
* Generally non-Linear Phase

Applications:
«  Speech Processing, Telecommunications
« Data Processing, Noise Suppression, Radar

Jan. 2009 Copyright © 2009 Andreas Spanias V-2

IIR FILTERS

The difference equation is:

y(n) = Z byx(n —i)—Z a;y(n-i)

Jan. 2009 Copyright © 2009 Andreas Spanias V-3

IIR FILTERS (Cont.)

The transfer function:

CY(z) byt+bzt+.+bzt
X(z) 1l+az*+..+a,z"

H(z)
The frequency-response function :

b, +be ? +..+b e
l+ae " +..+a,e ™

H(e'?) =

Jan. 2009 Copyright © 2009 Andreas Spanias V-4




IIR Filter Design by Analog Filter Approximation

The idea is to use many of the successful analog filter
designs to design digital filters

This can be done by either:

« by sampling the analog impulse response (impulse invariance)
and then determining a digital transfer function

or

« by transforming directly the analog transfer function to a digital
filter transfer function using the bilinear transformation

Jan. 2009 Copyright © 2009 Andreas Spanias V-5

IIR Filter Design by Analog Filter Approxination

The impulse invariance method suffers from aliasing and is
rarely used

The bilinear transformation does not suffer from aliasing and is
by more popular than the impulse invariance method.

The frequency relationship from the s-plane to the z-plane is
non-linear, and one needs to compensate by pre-processing the
critical frequencies such that after the transformation the desired
response is realized. Stability is maintained in this transformation
since the left-half s-plane maps onto the interior of the unit circle.

Jan. 2009 Copyright © 2009 Andreas Spanias V-6

Impulse Invariance

1 X . 1
h,(t)=——e Ru(t) and H =
L) =2 eu) o)== es

Xt o E (1)
I
y(n)
x(n)
nT

T -
h(n):ﬁe R u(n) H(2) =~ wrer 7
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Impulse Invariance (2)

1 1 1
H.(s)= + + v
S— p1 S— pz S— pM
T T T
HZ)=———+——+.....
1-e Pzt 1-e Pz 1-e ™zt
Jan. 2009 Copyright © 2009 Andreas Spanias V-8




The Bilinear Transformation

1+ s
Bilinear Transform= Z = ———
1-5
S — plane z- plane
Im Im
Re Re
z -1
H(z)=H(s=—)
z +1
Jan. 2009 Copyright © 2009 Andreas Spanias V-9

The Bilinear Transformation (Cont.)
The bilinear transformation compresses the frequency axis
o[-0 & Q[-7,7]

The non-linear frequency transformation (frequency warping
function) is given by

1
C 10
Q 5
o =tan| — 0
2 e
-1

W2 1 0 1 2 3
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Procedure for Analog Filter Approximation

1. Consider Critical Frequencies
2. Pre-warp critical frequencies
3. Analog Filter Design

4. Bilinear Transformation

5. Realization

Jan. 2009 Copyright © 2009 Andreas Spanias V-11

Applying the Bilinear Transformation

specification ’_'_‘

Prewarping |
(0]
Design //—N
(Q]
bilinear
transformation /\'\
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EXAMPLE: TRANSFORMING AN RC CIRCUIT TO A DF

Suppose we want a first-order
(R-

Say we have the following DF specs:

Step 1: QC =7xl2

Step 3: Design the analog filter.

H(w)=

R
C LPF) appoximation

_ 1
1+ joRC

x(t)

Apply pre-warping

In this case the analog filter function H (S) — 1
is afirst order LPF similar > 1+s
to an RC circuit
Jan. 2009 Copyright © 2009 Andreas Spanias V-13

o c
T

Step2: @, = tan(%) = tan(%) =1

TRANSFORMING AN RC CIRCUIT TO A DF (2)

Step 4: Apply the Bilinear Transform

H(z):H(s:L_l):%
z+1 4,

741

=05+0.5z*

Step 5: Realization

x(n) (n)
(03— !
(03—
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Phase (degrees)

TRANSFORMING AN RC CIRCUIT TO A DF (3)

H(e**)=05+05

Frequency Response

Normalized frequency (Nyquist == 1)

0 o1 o0z 03 04 05 06 07 08 08 1
Normalized fraquency (Nyquist == 1)

Notice that there is no aliasing effect with the bilinear transformation.
Although in this simple R-C example the resultant digital filter is FIR,

mosgsomplex analog filferswillyigld.UR.figital filters. V15

Analog Filter Designs

«Butterworth - Maximally flat in passband
«Chebyshev | - Equiripple in passband
*Chebyshev 11 - Equiripple in stopband

«Elliptic - Equiripple in passband and stopband
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Butterworth Filter Design

« Maximally Flat in the Passband and Stopband

1

1+ (i)ZM
D¢

|H (@)=
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Butterworth Max. Flat in Passband and Stopband

Butterworth frequency response - transition is steeper as order increas{

0.9]
0.8]
[}
U0 7|
3
2206
=4
b
EO.A
0.3]
0.2]
0.1
o 20 40 60 80 100 120 140
frequency)
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Butterworth Transfer Function

HSH(-5)=
1+ (—)™
Jo Poles on a circle of
S radius G,
(.7)”I =-1
Jo,

iz (2k+M 1)
12M ;
s, = (-1 Joo =0 € M

k=01..,2M -1
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Design Example - Butterworth

« A Butterworth filter is designed by finding the poles of
H(s)H(-s)

* The poles fall on a circle with radius &,

« The poles falling on the left hand s-plane (stable poles) are
chosen to form H(s)

e H(s) is transformed to H(z)
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Examples of IIR Filter Design Using MATLAB

FUNCTIONS IN THE SP TOOLBOX

1IR digital filter design.

butter - Butterworth filter design.

chebyl - Chebyshev type I filter design.

cheby2 - Chebyshev type Il filter design.

ellip - Elliptic filter design.

maxflat - Generalized Butterworth lowpass filter design.
yulewalk - Yule-Walker filter design.

IIR filter order selection.

buttord - Butterworth filter order selection.
cheblord - Chebyshev type I filter order selection.
cheb2ord - Chebyshev type Il filter order selection.
ellipord - Elliptic filter order selection.
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Butterworth Design in MATLAB

R

% Design an IIR Butterworth filter
clear

max dB deviation in passband
; %min dB rejection in stopband

[M,Wn]=buttord(Wp,Ws,Rp,Rs);

[b,al=butter(M,Wn);

theta=[(2*pi/N).*[0: (N/2)-2]1; % preconpute the set of discrete frequencies up
to fs/2

H=freqz(b,a, theta); % compute the frequency response
plot(angle(H))

pause

H=(20*10g10(abs(H))); % plot the magnitude of the frequency response
plot(H)

title(" frequency response”)

xlabel (*discrete frequency index (N is the sampling freq.)")

ylabel (*magnitude (dB)*)
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Butterworth Design in MATLAB (2)

%passband edge
stopband edge
H max dB deviation in passband
< Rs=40; %min dB rejection in stopband

* b= 00021 00186 0.0745 0.1739 0.2609 0.2609 0.1739
« 0.0745 0.0186 0.0021

e a= 10000 -1.0893 16925 -1.0804 0.7329 -0.2722 0.0916
« -0.0174 0.0024 -0.0001
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Butterworth Design in MATLAB (3)

Jan. 2009 Copyright © 2009 Andreas Spanias V24




MATLAB Chebyshev Il Design Example

Chebyshev | - Equiripple in passband
Chebyshev 11 - Equiripple in stopband

% Design an IIR Chebyshev Il filter - Ex 2.20

clear
N=256; %for the computation of N discrete frequencies

passband edge
stopband edge
pple in passband (dB)
: rejection (dg)

[M.Win] = cheb2ord(Wp,Ws, Rp, Rs); % determine order

[b.a] = cheby2(M,58,Wn); %determine coefficients

% use routines to plot frequency response
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IIR Chebyshev Il Example

b= 00274 0.1065 0.2290 0.3252 0.3252 0.2290 0.1065

0274

a=1.0000 -0.7484 12644 -0.4555 0.3427 -0.0454 0.0186

-0.0002

Jan. 2009 Copyright © 2009 Andreas Spa. .

MATLAB Elliptic Design Example

% Design an 1IR EI c Filter
clear

N=256; %for the computa

on of N discrete frequenc

.4; tpassband edge
.6; tstopband edge
max d8 deviation in passband

jection in stopband
pord(Wp,Wis,Rp.Rs);
ip(M,Rp,Rs,Wn); tide:

on Filter
size(b)
theta=[(2*pi/N).*[0: (N/2)-2]]; % precompute the set of discrete frequencies up to fs/2

H=freqz(b,a, theta); % compute the frequency response
plot(angle(H))

pause
H=(20*l0g10(abs(H))); % plot the magnitude of the frequency response
plot(H)
title("frequency response”)

xlabel(*discrete frequency index (N is the sampling freq.)")

ylabel (*magnitude (dB)")

pause
zplane(b,a) ;% z plane plot
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IR Elliptic

b= 0.0181 0.0431 0.0675 0.0675 0.0431 0.0181 -

a= 10000 -2.3214 33196 -2.8409 15154 -0.4151
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Introduction to Special types of
Digital Filters

 Shelving Filter
« Peaking Filter
« Graphic Equalizer

Jan. 2009 Copyright © 2009 Andreas Spanias V-29

Shelving Filters

Shelving filters realize tone controls in audio systems. The
frequency response of a low-pass (bass) and high-pass (treble)
shelving filter is shown below.

Frequency response of a low-pass and high-pass shelving filter.

Jan. 2009 Copyright © 2009 Andreas Spanias V-30

Tone Control Block in J-DSP

The low frequencies are
affected by bass
adjustments with the
audio signal processed
through low-pass T
shelving filters. The high =~ ==
frequencies are affected
by treble adjustments
with the audio signal | E £=

processed through high- === . .
pass shelving filters. A . ii— 1
J-DSP simulation using —

the Tone Control . Figure J-DSP simulation using the tone control block.
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Peaking Filter Block in J-DSP

A J [3Psimulation using the Peaking Filter block is
shown below

Figure 9: J-DSP simulation using the peaking filter block.
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Graphic Equalizer

« A graphic equalizer uses a cascade of peaking filters

It alters the frequency response of each band by varying the
corresponding peaking filter’s gain.

Input

Graphic Equalizer Block in J-DSP

A J [P simulation using the Graphic Equalizer
block is shown below. The sliders are a graphic
representation of the frequency response applied to the
input audio signal, hence the name “graphic” equalizer.

il -
Output —
A diagram of a graphic equalizer with N bands of -DSP simulation using the graphic equalizer block.
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FIR vs IIR Digital Filters FIR vs IIR Digital Filters (Cont.)
FIR IR FIR IIR
WA_‘IWayS sta:)Ie ll;lot alvyays stable Pole-zero efficient for both
ransversa ecursive notches and peaks
All-zero model All-pole or Pole-zero model

Moving Average(MA) model | Autoregressive(AR) or
Autoregressive Moving
Average (ARMA) model
Inefficient for spectral peaks | Efficient for spectral peaks (all
pole, pole-zero)

Efficient for spectral notches | All pole inefficient for spectral
notches
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Requires high order design Generally requires lower

order design

Less sensitive to finite word More sensitive to finite word
length implementation length implementation

Linear phase design Generally non-linear phase
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Digital Audio Filters (1)

# The echo effect is obtained by L S
mixing the input signal with its d
delayed version.

# The proportion of the delayed
signal to the "clean” original
signal determines how obvious
the echo is, and the delay
signifies the echo period.

2 y(n)=x(n) +b.x(n-R)
« R = the number of echo delay in samples. - T - S —
« In order to have a distinguishable echo, R = =
should be relatively large.

«b i the attenuation constant (|b| < 1).
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Digital Audio Filters (2)

& Reverberation is obtained by Y-
mixing the input signal with
the delayed versions of its
feedback.

= The effect of the feedback
results in multiple echoes.

2 y(n)=x(n)+b.y(n-R)

$4—

« b is the attenuation constant (b| < 1) - nima e - T —

+ R = feedback delay in samples
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Other Methods for Digital Filtering

Median Filters

y(n) =median {x(n-i}

The median operation ranks the samples in the memory of the
filter and picks the sample that falls in the middle of the
rank and assigns it to the output y(n)

Used for impulsive noise. One application reported is scratch
noise removal in vinyl record restoration
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2-D Filters for Image Applications

* FIR 2-D filter
L M
y(nl’n2)=z Zh(nl,nz)x(nl—l,nz—m)
=0 m=0

* |IR realizations also possible

* Theory very similar to 1-D and described in
multidimensional signal processing books
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Implementation of 2D Filters

e
W[ e[
D
S| |
Low-pass filtering of a natural High-pass filtering of a natural image
imageo Copyright © 2009 Andreas Spanias V-41




THE DISCRETE AND THE FAST
FOURIER TRANSFORM

The DTFT of a finite sequence

{1 ..... ,OgnsN—l}
x(n) =

then
_ N-TL 1—e IN©
XEe)y=em=-- _
e™) HZ:;) e
or
X(ejQ) — g iN-nor2 sin(NQY/2)

sin@/2)

Remark: The sin(.)/sin(.) function is known as a digital sinc
or a Dirichlet function.
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. The DTFT of a finite sequence (Cont.
The DTFT of a finite sequence (Cont.) q ( )
1..... ,0<n<15
x(n) =
1 0<n<?7 () 0..... ,elsewhere
X(n) =
(n) {0 ..... ,elsewhere}
8 14]
7 12|
6 10
5 8
p
6
3
4
z
2
T
o 0 05 1 15 2 25 3 35
0 05 1 15 2 25 3 35
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The Discrete Fourier Transform (DFT)

N -1

X (k) = Z X(n)e—jann/N

n=0

and k=0,1,...,N-1
The inverse Discrete Fourier Transform (IDFT) of the sequence x(n)

1! i = -
X(n):WZ X(k)e]27rkn/N and n 0,1,...,N1
k=0
The DFT transform pair is denoted by

{x()} e {X (k)|
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The DFT Matrix

The DFT and the IDFT may be expressed in terms of matrices, i.e.,

X(0) 1 1 1 .. 1 x(0)
X(1 1 ¢t ¢ L M X
X@) ||t ¢t gt M X(©2)

X(N-1) 1 C'(N'l) grz(m) el 1y x(N-1)
-k —j2a/N -1 1
where ¢ =e and E = 7E
N
a more compact form X = F X and X = F -1 X
Jan. 2009 Copyright (c) 2009 Andreas Spanias - e

The DFT Matrix (2)

e

1 1 1
F= [l -0.5-j0.866 -0.5+ j0.866l

, N=4, and N=8

1 —0.5+j0.866 —0.5— j0.866

1 1 1 1
1 - -1

e |t - j
1 -1 1 -1
] -1 -j

Jan. 2009 Copyright (c) 2009 Andreas Spanias

Selected Properties of the DFT
uinearity: — {ax(n) + Ay(n)} > {aX (k) + BY (k)}
shifting: ~ {X(n—m)mod N } < e 2™ N {x (k)}

x(N)® h(n) < X (k)H (k)

Circular Convolution:

z

where x(n)®h(n)= 7; h(m) x((n-m),)

3
i

1
Freq. Circular Convolution: X (M)W (N) <> N X (k)®W (k)
N1 , 1 N ,
Parseval’s Theorem: Zo X ( n ) = N_ kz—:o | X ( k )l
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Frequency resolution of the DFT

The frequency resolution of the N-point DFT is

*The DFT can resolve exactly only the frequencies falling
exactly at: k fs/N. There is spectral leakage for components
falling between the DFT bins

*Typically we use an FFT that is as large as we can afford

«Zero-padding is often use to provide more resolution in the
frequency components

*Zero padding is often combined with tapered windows
Jan. 2009 Copyright (¢) 2009 Andreas Spanias VL9

Spectral Estimates over Finite-time Data windows

Frequency domain representations are appropriately defined by the
Fourier Transform integrals over an infinite time span.

The DFT, however, estimates the spectrum over finite time
The DFT essentially applies a window to truncate the data.
The simplest data window is the rectangular (boxcar).
Truncation in time is convolution in frequency

The frequency domain characteristics of the data window, namely
its bandwidth and sidelobes, affect the DFT spectral estimate.
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WINDOWS

The spectral characteristics of the window affect the spectral estimates. The

rectangular window has the narrowest mainlobe width but the wordt sidelobes.

Tapered windows have wider mainlobe width but better behaved bandwidth.

N-point Mainlobe Sidelobe
Window width Level
Rectangular 4m/(N+1) -13dB
Triangular 8 /N -25dB
Hamming 8 /N -41dB
Hanning 8n /N -31dB
Blackman 127 /N -57dB
Jan. 2009 Copyright (c) 2009 Andreas Spanias VI

FFTs of Sinusoidal Signals (1)

256-point FFT of a 500 Hz sinusoid (fs=8 kHz). Notice
that this sinusoid is resolved exactly

FFT
50

o

-50

100

150

magnitude (d8)

200

250

o0 250 300
discrete frequency index (N is the sampling freq.)
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FFTs of Sinusoidal Signals (2)

256-point FFT of a 510 Hz sinusoid (fs=8 kHz). Notice
that this sinusoid is NOT resolved exactly

FFT

magnitude (d8)

o 50 100 150 200 250 300
discrete frequency index (N is the sampling freq.)
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Zero-padded FFTs of Sinusoidal Signals (2)

16-point FFT of a 16-point 590 Hz sinusoid (fs=8 kHz).

Vs
256-point FFT of a 16-point 590 Hz sinusoid (fs=8 kHz).
Notice that although this sinusoid is NOT resolved exactly the frequency of the peak in the
zero-padded case is closer to actual
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Windowed FFTs on Sinusoids
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Window Comparison with Closely Spaced Periodicities

boxcar.

hamming

high resolution ---->
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window Comparison with Distant Periodicities The FFT-DIT Algorithm

o s The FFT decimates the sequence and performs a DFT by processing results
of smaller size DFTs. This is done by decomposing the N-point DFT to 2-
point DFTs and using “butterfly” operations to obtain the result. For a
Decimation in Time (DIT) FFT algorithm the following steps are taken:

' i N -1
X (k) = Z x(n)e j2mk/N
] =

By decimating x(n) we can write

L - (N/2)-1 (N/2)-1
X (K) = x(2n)e 122N X(2N + 1)g~127Cn+HK/N
High Resolution ) nzz(:l @n ; ¢ )
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The FFT-DIT Algorithm (Cont.) The FFT-DIT Algorithm (Cont.)
. k —j2nk/N
if we define X, (N) = X(2N) XN =x2n+1) W =e" © X,0) X(0)
(N/2)-1 ; (N/2)-1 ) X2) 4 point X,(1) X(1)
n ni
Xl(k): z Xl(n)WN/Z Xz(k)= Z Xz(n)WN/z x(4) DFT X) X(2)
n=0 n=0 X,(3) X(3)
X(6)
0
0 X0 W X()
k X, (1 1 X(5
X (k) = X, (K)+ WX, (k), k=0,1,.,N/2-1 ) 4 point sz)) w > Xfﬁ:
5 prT |22 W -
X (k+N/2)= X, (K)=WEX, (k) 8 X0 W . X()
Remarks: The N-point DFT is broken down to two N/2-point DFTs. We then write the
N/2-point DFTs as a combination of two N/4-point DFTs and so forth.
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The FFT-DIT Algorithm (Cont.)
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The DFT and the FFT Complexity

The N-point DFT requires N> multiplications and N? —1 additions to
compute the discrete frequency spectrum.

The complexity of the DFT is reduced using the FFT to
N/2 log,N multiplications and N log,N additions.

For example if N=4096 the DFT requires 16,777,216
multiplications while the FFT requires 49,152 multiplications.
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FFT ALGORITHMS

IN FFT DECIMATION-IN-TIME
-the frequency-domain (output) indices are in place while the time-domain
(input) indices are bit-reversed

IN FFT DECIMATION-IN-FREQUENCY
-the time-domain indices are in place while the frequency-domain indices are
bit-reversed

VARIANTS OF FFT ALGORITHMS:
Low-Complexity "Prunned" FFTs
- For computing fewer frequency bins
- when time-domain values are systematically zero (ex: zero padded FFTs)

Radix 4 and Mixed-radix FFTs, Gortzel Algorithm (computes only one frq. bin),
Rader, Prime Factor, Winograd, Zoom FFTs

Reference: E. Brigham, "The FFT and its Applications," Prentice Hall, NJ 1988
Links on FFT: http://www.fftw.org/links.html
FFT laboratory: http://sep .stanford.edu/oldsep/hale/FftLab.html
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FFT Applications
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FFT AND SPEECH ENHANCEMENT

«If we have speech corrupted by background noise, the spectrum
of background noise can be estimated during speech pauses.

*Speech is enhanced in the spectral domain by subtracting the
estimated noise spectrum from the noisy speech spectrum

*FFT-based spectral subtraction is used in military applications

*Also used in CDMA cellular IS-127 telephony standard
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FFT SPEECH ENHANCEMENT IN CDMA

s 60 HGO

Overapiadt

— windawET \\X( —
iFET

ChametEvrgy Chametcan
p— comutaion
ol
- Ech(m) i ~ } T En(r)
Chaer s o Cramelsin
Ewi(m) L
Estimator | Estimator Modification
— I } )
Computation |
' ! v(m)
obenin :
ouisin Update Flag
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FFT AND SINUSOIDAL TRANSFORM CODING

ENCODER -
TAN()

peech

PHASES

DECODER AMPLITUDES
PHASES FRAME-TO-FRAME
i . el
RAP GENERATOR
——*| UNWRAPPING & SPEECH

FREQUENCIES | _'NTERPOLATION

FRAME-TO-FRAME
—

AMPLITUDES | INTERPOLATION

f Implemented by IFFT and

R. MeAulay and T. Quatieri, “Sinsoidal Coding,”Ch. 4, Specch
Coding and Synthesis, W.B. Kleijn and K. Paliwal, eds, Elsevier,
1995

overlap&add procedure
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Simple FFT Based Compression

DET Redundancy IDFT
Vector X ——» Analysis " Removal || Synthesis [
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Output signal vector
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VII-28




Fast Convolution Using the FFT

¢ Fast Circular Convolution

b. Fast Linear Convolution

FFTs are often used to compute efficiently convolutions of
very long sequences. Such convolutions arise in adaptive filters
that are used in noise and echo cancellation.
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Fast N-point Circular Convolution

x(n) X(k)
FFT l
Y(k) y(n)
IFFT ———
h H(k f
(n) FFT (k)
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Fast N-point Linear Convolution
using the Overlap/Save

x(n) 2N X(k)
FFT

Y(k) |2N
IFFT

N | HE

FFT
£
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y(n)

Jan. 2009

J-DSP and Fast Convolution

TR !;.——:,i

L —— |

TASAOYR S | O ILTE O -] ERIEARBEODORL e
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Orthogonal Frequency Division Multiplexing (OFDM) and FFTs

ofm)  ——5(m)

win)
— . ) o
A §IP A IFFT oo L g “hny D
1 I I~ P 1 1 I~
. } 2(n) ¥(n) (n
O [ O o B [ XD )
1 I ol 8 f

z,(n)=HQ2aK/N)s (n)+w,(n) k=1...,N
z(n) =Dys(n)+v(n)

Jan. 2009 Copyright (c) 2009 Andreas Spanias VII-33




