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Ion-Channels 

Ion-channels produce a 

fluctuating current 

characterized by binary 

states. 

 

An ion-channel can be 

characterized from the 

magnitude and duration 

of fluctuations. 
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Analysis of Ion-Channel Signals 

How to estimate the number of 

ion-channels active? 

How to discriminate 

between two ion-

channels? 

How to detect an analyte 

using the ion-channel 

sensor array? 
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Analysis of Ion-Channel Signals 

CHANNEL ESTIMATION 

CHANNEL 

CLASSIFICATION 

ANALYTE DETECTION 
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 The PSD is dependent only on the Eigen decomposition of the state 

transition matrix and it will always exhibit low-pass characteristics. 

 

 Proof: Under zero noise conditions, an ideal ion-channel signal is 

the realization of a continuous time Markov random process. 

 The continuous time Markov process is defined by the rate transition 

matrix Q, whose rows sum to 0.  

 Sampling the process at time intervals Δ gives rise to a discrete time 

Markov process. The state transition matrix of the discrete time 

Markov process is obtained as A = exp(QΔ ). 

Feature Extraction - Motivation 



 Eigen decomposition of state transition matrix: 

 

 

 

 

 

 

 Here, s is the vector of state realizations and      contain stationary 

probabilities.  

 This means that the poles of the PSD lie on the positive real axis in 

the z-plane as        (eigenvalues of A) are between 0 and 1. 

 Thus, the PSD is dependent only on the Eigen decomposition of the 

state transition matrix and it will always exhibit low-pass 

characteristics. 

 

 

 

 

 

8 

Feature Extraction - Motivation 
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 PSD of the ion-channel signal is obtained using the Welch procedure. 

 The features are modified PSD. 

 PSD is divided into dyadic bins. 

 Values in each bin are summed and normalized by the signal 

power. 

 Lower frequencies are represented by more points in the feature 

vector than higher frequencies. 

 

 

 

Fourier Domain Features 
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 Noise cannot be modeled. 

 Exploit self-similarity between features  

Eliminating Noise in PSD Features 
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Robust PSD Features using Matrix Completion 
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Eliminate outliers and complete matrix using low rank assumption 



• Matrix Y can be obtained by solving the following optimization 

problem 

 

 

• The rank minimization problem is non-convex and NP-hard. 

• Rank is replaced by its convex surrogate: nuclear norm 

 

 

• The relaxed problem is given by 
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Rank Minimization 

minimize rank( )

subject to ( ) ( )

Y

P Y P M 
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Singular Value Thresholding (SVT) 
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• Iterative: Prediction and Correction 

 

 

 

              is the shrinkage operator which retains singular values greater   

than  

 

• Repeated until convergence is achieved. 
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Proposed Robust PSD Features  

Robust PSD features. (a)-(c) are the original PSD features for three 

segments of the data, while (d)-(f) are the corresponding stabilized PSD 
features.  



15 

 Sensitivity and specificity measure the proportion of the correctly 

identified positives and negatives respectively.  

 

 It can be clearly observed that the post processing of the PSD 

features leads to improved classification rates. 

Classification Results 



ASU SenSIP and CSSER Centers 16 

Estimation of Number of Channels 

• Support Vector regression (SVR) is used estimate the number 

of channels from the features of frame each . 

• A simple least square fit over the average energy features can 

give similar results. 

 

 

 

 

 

 

• Table shows the avg. error in the estimates using the three kind of 

inputs to SVR.  

Number of 

Channels 

Feature Values Feature 

Energy 

Feature Value + 

Energy 

N = 1 0.050 0.033 0.043 

N = 2 0.069 0.045 0.063 

N = 3 0.034 0.029 0.037 

N = 10 0.087 0.071 0.092 
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Estimation of Number of Channels 

• We observe that dividing the feature vector of a signal frame with N 

channels operational by N , normalize the feature vector in terms of 

the energy. 

 

 

 

 

 

 

• Normalized Feature Vectors  are thus independent of the number of 

channels and are accurate when the SVR is trained for wide range of 

‘number of channels’.  

Number of 

Channels 

Feature Energy – 

Original 

Feature Energy – 

Normalized 

N = 1 407 407 

N = 2 1553 383 

N = 3 3776 419 

N = 10 55850 496 
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Sensor Array for Analyte Detection  

• A four sensor array is built. Three sensors provide the base signals. The 

other provides the test signal in which analyte is introduced.    

 

 

 

 

 

 

 

• Analyte Presence Decision: >10 fold separation in WED w.r.t each 

base sensor. Simple Voting Scheme for Decision Fusion for accurate 

detection.  
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 A detection hit is defined as the case when the WED goes above 

an empirically obtained threshold. Such cases are referred to as 

false hits.  

 Table II shows the percentage of false hits obtained using the 

original PSD features and the stabilized features. 

Detection Results 



Silicon Pores as Coulter Counter 

R.R. Henriquez et al., Analyst , 129, 478-482, 2004 

A membrane containing a single 

channel divides two chambers 

containing an electrolyte solution. 

 

 If particles of an appropriate size 

and charge are present, they will 

enter the channel and reduce the 

ion current.  

 

Coulter counter data consist of a 

series of current pulses 

associated with the presence of 

particles within the channel.  
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Clustering of Events 

Motivation:  

• Two or more silica 

beads coagulating : 

representation of 

different particles.  

 

• Current drop in case of 

beads coagulating is 

unknown.  

 

• Unsupervised learning 

problem: clustering in 

the feature domain 



Clustering of Events 
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. 

Unknown number of clusters:  

• K-means and the mixture of Gaussians: require the number of 

classes to be known. 

 

• Number of clusters: Dirichlet mixture model, Minimum Description 

Length (MDL) Principle. 

 

• Spectral Clustering: Similarity based clustering scheme.  

 

 



DP Mixtures 
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If F is a normal distribution, this is the a Gaussian mixture 

model. Gibbs Sampling is used to find the marginals. 

Graphical Model for DPMM 



Chinese Restaurant Process 
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Chinese Restaurant Process is an interpretation of DPMMs or Infinite 

Mixture Models. It  explains the ability to form new clusters.  

Unlimited number of tables 

Each table has an unlimited 

capacity to seat customers. 

The (m+1)th subsequent 

customer sits at a table drawn 

from the following distribution: 
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where mi is the number of previous customers at 

table i and  α  is a parameter. 



Clustering Results 
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• Dataset 1:  1523 drops 

and 43 events 

 

• Levels of wavelet 

decomposition: 5. 

 

• DPMM concentration 

parameter α was chosen 

to be 2.  

• The mean drop amplitudes obtained for the three clusters are -213.4 

pA, -433.0pA and -1086.7 pA . 



Normalized Spectral Clustering 
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Number of clusters 

MDL principle: The best hypothesis for a given set of data is the one 

that leads to the best compression of the data. 

 

Similarity based clustering 

Algorithms that cluster points using eigenvectors of matrices derived 

from the data. These are inherently based on similarity between data 

points.  

 

Do not assume generative model hence can work for different shapes 

of clusters. 

 

We use a normalized spectral clustering approach proposed by Ng et 

al. Uses k Eigenvectors simultaneously  and computes directly a k 

way partition. 



Spectral Clustering Algorithm  

 Given a set of points 

 

 Form the affinity matrix 

 

 Define diagonal matrix 

                  

 

 Form the matrix L:  

 

 Stack the k largest eigenvectors of L to form the columns of the new 
matrix X:  

 

 Renormalize each of X’s rows to have unit length. Cluster rows of X 
as points in Rk which is reflecting on S. 
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Clustering Results  
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Two-fold clustering: 

Spectral clustering using both time 

and  amplitude and identify the 

outliers;. 

Kmeans on the outlying cluster using 

only the current drop feature.  

 

MDL estimate: number of clusters: 4 

 

GMM with EM: does not provide 

meaningful clusters. 

 

Spectral clustering: three natural 

clusters and an outlying cluster 

consisting of events of high time 

duration.   
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 Wavelet based de-noising was demonstrated on silicon-pore 

signals. 

 Algorithm for extracting and clustering events in silicon-pore 

signals were implemented.  

 Transform domain features feature were proposed to characterize 

ion-channel signals. 

 Robust PSD features obtained with low rank assumption lead to 

higher classification rates. 

 PSD features were also used in SVR setup to estimate number of 

channels. 

 Decision level fusion of ion-channel sensor array produced lower 

false hit rates. 

Conclusions 
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Ion-channel signals 

 Develop feature level fusion algorithm for multiple sensors. 

 

Silicon-pore signals 

 Sparse decomposition of signal for accurate event detection. 

 Modify spectral clustering (of events) for automatic order 

selection. 

 

Implementations 

 Speed up heavy computations using Graphics Processing Unit. 

 

 

 

Future Work 
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 We plan to extend the implementation to wavelet based de-

noising. 

 Among the unsupervised learning algorithms Bayesian Clustering 

is prime candidate for parallelization. These algorithm involve 

Markov Chain Monte Carlo (MCMC) estimations which are 

computationally intensive but highly independent 

 Matrix completion on GPU by parallelizing matrix computations.  

GPU for Ion-channel / Silicon-pore Signals 

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.
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